
OCAD University Open Research Repository

Faculty of Art

2024

Reshaping Time-Exploring grid
interfaces for ansiorhythmic patterns
Tindale, Adam and Clark, Colin B.D.

Suggested citation:

Tindale, Adam and Clark, Colin B.D. (2024) Reshaping Time-Exploring grid interfaces for
ansiorhythmic patterns. In: Proceedings of the International Conference on New
Interfaces for Musical Expression. Available at
https://openresearch.ocadu.ca/id/eprint/4611/

Open Research is a publicly accessible, curated repository for the preservation and dissemination of
scholarly and creative output of the OCAD University community. Material in Open Research is open
access and made available via the consent of the author and/or rights holder on a non-exclusive basis.

The OCAD University Library is committed to accessibility as outlined in the Ontario Human Rights Code
and the Accessibility for Ontarians with Disabilities Act (AODA) and is working to improve accessibility of
the Open Research Repository collection. If you require an accessible version of a repository item contact us
at repository@ocadu.ca.

mailto:repository@ocadu.ca

Reshaping Time - Exploring grid interfaces for
ansiorhythmic patterns

Adam Tindale
OCAD University

100 McCaul Street
Toronto, Canada

atindale@ocadu.ca

Colin Clark
Institute for Research and Development on

Inclusion and Society
20-850 King Street West

Oshawa, Canada
colin@colinclark.org

ABSTRACT

Grid layouts are popular in music controllers. While they
are excellent for many tasks, they usually require a predefi-
nition of a single subdivision to be represented. In this pa-
per we explore techniques for visually representing rhythmic
phrases that have multiple subdivisions and tuplet group-
ings within a grid interface. The paper proposes an an-
siorhythmic (dissimilar pattern) grid notation system for
expressing rhythms that may vary their length, subdivision
or phase within a grid structure that has historically been
limited to one subdivision per sequence. A proof-of-concept
Max/MSP demonstrates a tactile interface for a polyrhyth-
mic, polymetric, and polyphasic sequencer.

Author Keywords

Musical notation, grid controllers, tactile interfaces, music
sequencer, step sequencer

CCS Concepts

•Applied computing → Sound and music computing; Per-
forming arts;

1. INTRODUCTION
Rhythm can be imagined as the events that occur in relation
to a pulse. A pulse can be divided into any number of subdi-
visions and variations of patterns. Grid layouts are popular
in music controllers - they make it very easy to turn on and
off events in a subdivision in order to create patterns, they
leverage the tactility of a physical interface. While grids
are excellent for many tasks, but sequencers utilizing grids
often only provide a single subdivision to be represented.
In this paper we explore techniques for visually represent-
ing rhythmic phrases that have multiple subdivisions and
tuplet groupings within a grid interface, and explore its
use in performance. The paper proposes an ansiorhythmic
grid notation system for expressing rhythms that may vary
their length, subdivision, or phase within a grid structure.

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’24, 4–6 September, Utrecht, The Netherlands.

The goal of the project is to provide a method to express
polyrhythmic, polymetric, and polyphasic patterns that can
be implemented with either software or hardware.

While there is no shortage of software and hardware in-
terfaces available that are able to sequence events for mu-
sical uses, in many of them it is not a primary function to
be able to define rhythms with arbitrary tuplet groupings.
Many sequencers focus on rhythms that are a power of 2
divisor of the beat. Many also offer rhythms that are a
power of 3 divisor of the beat, but most do not offer a way
to easily move between these subdivisions, if they offer this
capability at all. Very few offer a divisor of 5 or 7 or 9.

With many grid-based interfaces the choice of subdivision
has to made when the sequence is initialized, and some of-
fer the ability to change, but that usually means that the
divisions for the whole track are changed, rather than one
beat. There are interfaces that overcome this limitation but
most often these require some menu diving, complex uses of
slices and chains, or other workarounds rather than provid-
ing changing subdivisions as a primary interaction modality.

In Bjork’s Hunter from the album Homogenic the drum
pattern was created by Mark Bell on a Roland 909. The ma-
jority of the track utilizes a sixteenth note pattern that cre-
ates variation with a variety of accent levels and distributing
notes between the bass drum and snare drum sound. Em-
bellishments are added throughout the track that are seem-
ingly impossible without modern sequencer features such
such a micro-timings. Bell is able to create ruffs by cloning
the main pattern and breaking it into sections, changing the
subdivision of a section to thirty-second notes and insert-
ing extra notes to perform the ruff, and then chaining these
patterns back together on the fly. A similar tactic is em-
ployed to perform the quarter-note triplet that appears but
to realize this figure Bell creates a pattern that changes the
tempo of the machine1. Bell’s performance demonstrates
knowledge and control of both the Roland 909 and the abil-
ity of varying subdivisions to effect the flow of a piece of
music to magnificent effect.

If a performer is able to move easily between subdivi-
sions would they utilize them more often, and could it help
them develop their own voice? Gander proposes that learn-
ing more about polyrhythms provides performers with tools
they need to expand their musical vocabulary and develop
an identifiable ideolect. “In my approach, a gridded frame-
work of metric precision is a necessary first step to fluid
integration of complex rhythmic language, and I develop
this area of vocabulary in reference to a digitally fixed tem-
poral source ... prior to any relaxation of this constraint”.[7]
While Gander is referring to drumset performers, much of
the same logic applies to electronic musicians.

1https://www.youtube.com/watch?v=Ix4U9eVDJk0

https://www.youtube.com/watch?v=Ix4U9eVDJk0

2. BACKGROUND
Sequencer instruments allow performers to express patterns
through creation, chaining, modification, and other trans-
formations of the component materials. Sequencer instru-
ments use some form of linear representation of time, often
with an added dimension to represent pitch or intensity[3].
This project shares the aims of many sequencer projects by
creating an interface to express a multitude of rhythms[1, 8,
12]. The circle provides the potential to express the infinite
possibilities of rhythm within a cycle [10, 9]. The circle is
an “interface that can generate a wide variety of rhythmic
configurations, including ones that evade isochronous divi-
sions of a cycle.” [4] Conceptualizing a cycle as a circle goes
back hundreds of years to Safi al-Din Urmavi who wrote the
kitāb al-Adwār in the 13th century and in it he details neck-
lace notation, where events can be placed around a circle
[2].
Unfortunately, grids are finite spaces that are unable to

represent infinite possibilities. The Monome[6] grid inter-
face was a watershed moment in sequencer interfaces, pro-
viding inspiration for both music making, and development
of idiomatic sequencer creation, stemming from the open-
source nature of the project and its clear focus on sharing
of ideas as well as music[14].
Grid-based tactile hardware MIDI controllers are widely

available commercially and usually includes visual feedback
in the form of lighting the individual buttons, such as the
Monome, Ableton Push, MPC, Beatstep (and Pro), Launch-
pad. Most of these interfaces also include buttons around
the grid. Grid controllers are especially amenable to changes
because they represent a simple and adaptable interface.
Instead of proposing a new piece of hardware this project
proposes a new method of using grids to express rhyth-
mic patterns that are difficult or impossible to achieve with
other solutions. As Bill Buxton says: ”Devices, then, are
chosen for their range of applicability.” [5]

3. EXAMPLES OF GRID NOTATIONS
Ansiorhythmic Grid Notation works by allowing the user to
freely define regions on the grid that correspond to rhythmic
sequences. One dimension of the grid represents the number
of beats and the other dimension represents the comprising
tuplet of the beat. While these orientations are flexible, for
the purposes of this paper the columns or Y dimension will
represent the beats proceeding from bottom to top, and the
rows or X dimension will represent the tuplets comprising
each beat oriented from left to right. For example, a rhythm
comprising of a quarter note, then two eighth notes, and
then five quintuplets, making eight notes spaced over three
beats would be expressed as a single cell for the first beat,
two cells for the second beat, and five cells on the third beat
(see Figure 1).

5

Figure 1: A pattern mixing tuplets with the grid represen-
tation shown on the left and the western notation shown on
the right.

The initial purpose of the ansiometric grid notation sys-
tem was to express complex rhythms, upon explorations

there was also an opportunity to express simple rhythms us-
ing less space on the grid. For example, the four-on-the-floor
bass drum pattern of quarter notes, typically in four/four
common time, can be expressed as a set of four cells in a
region, similar to venerable line piece in Tetris. Given that
the pattern may be made up of a single repeating item, this
shape can be further reduced a single repeating cell (see
Figure 2).

Figure 2: A four on the floor pattern with the grid represen-
tation shown on the left and the western notation shown on
the right.

Since repeating patterns can be expressed using only the
number of cells required, rather than selecting the impulses
in a predefined set of locations, there can be a great deal of
space left over in a grid. The patterns are expressed relative
to themselves, so their location within the grid is not tied
to their representation inside of a system. This allows for
patterns to be placed anywhere on the grid, and also for
many patterns to be placed on the same grid. It is this
property of the notation that allows for both polymetric
(patterns of different or varying lengths) and polyrhthmic
(patterns emerging from multiple voices playing patterns
with different subdivisions) to be expressed simultaneously
utilizing the primary mode of input (See Figure 3).

Interaction Modalities

orange

yellow

green
3

aqua
3 3 3 3

red
3 5

Figure 3: Multiple patterns with varying lengths and tuplet
divisions (each colour denotes a different pattern) with the
grid representation shown on the left and the western nota-
tion shown on the right.

3.1 Creating Patterns
The creation of a sequence requires the user to touch one or
more cells on the grid which creates a region consisting of
the enclosed cells. The creation of the region occurs when
any touch from the grid is released. The lower left cell of the
region is assigned to the origin and the start of the sequence
it represents. Should a user touch the lower left cell and the
cell four up and four across from there, a region of 16 cells
with four rows and columns is created. This represents a
sequence of four groups of sixteenth notes, should the beat
duration be set to a quarter note. A single cell region, like
the one in Figure 2, is created by touching one cell and
releasing. A pattern like the one in Figure 1 is created by
touching three places on the grid: the origin of the bottom
left, the right hand edge of the group of two, and the right
hand edge of the group of five.

Grid

+ Region[] regions
+ int rows
+ int columns

+ addRegion(region) : Region

Region

+ Cell[] cells

+ doesOverlap(region) : bool

Cell

+ int x
+ y int

InputManager

+ Device[] devices

+ midiInput(midiEvent) : Cell

Mediator

+ Region[] regions
+ Sequence[] sequences

+ linkRegionSequence(region, sequence)
+ receiveSync(timeIndex) : midiEvent

OutputManager

+ Device[] devices

+ midiOutput(midiEvent)

Sequencer

+ Sequence[] sequences
+ float bpm

+ addSequence: Sequence

Sequence

+ Note[] notes

+ getNote(position) : Note

Note

+ pitch
+ velocity

Figure 4: Class relationship diagram of the software architecture.

3.2 Modifying Patterns
If a region that is created overlaps with an existing region
then the new region will not be added to the grid. The
exception to this rule is the case of modifying an existing
region. To modify a region after it has been created, the
user can touch the left hand side of a region, which corre-
sponds to the cell that aligns with the beat divisions of the
correlated sequence. If a new region aligns with the beat
divisions then it will modify the region instead of creating
a new one or being deleted. For example, another way to
create the pattern in Figure 1 would be to create a region
of three quarter notes, then to create a region of two that
was aligned with the second beat, and a region of five on
the third beat. This region can conversely be modified back
by repeating the original three quarter note gesture and the
cells will be freed.

3.3 Adjusting Pattern Phase
The ability to adjust the phase of the sequences allows for
methods of expression, such as displacement patterns on
the drumset, or phase music such as the compositions of
Steve Reich. Each region has its own phase, and with mul-
tiple running sequences it is possible to express polyphasic
patterns in addition to the polymetic and polyrhythmic pat-
terns already explored.

By default sequences begin at their origin and proceed
to their endpoints. The starting point may be adjusted by
entering a mode where a touch within a region indicates
that the cell will now represent the starting phase of the
sequence. For example, by touching the third note in the
pattern in Figure 1 then the sequence will start from the
third eighth note, or halfway through the bar.

This functionality requires the application to signal a
change of input mode to the Mediator class in Javascript.
Input modes are available by a drop-down menu in Max/MSP
or using a physical key on hardware. While this choice is
sub-optimal, it was chosen to ensure that all cells in the grid
are available for pattern expression.

4. IMPLEMENTATION
The proof-of-concept ansiorhythmic grid notation software
is implemented in two layers: a Javascript layer of classes
to manage state, and a Max/MSP layer providing a simple
polyphonic step sequencer. The rationale for the software to

5

Figure 5: A mixed tuplet pattern that has been phase shifted
to the third note with the grid representation shown on the
left and the western notation shown on the right.

be implemented in separate layers is that the Javascript al-
lows for an Object-Oriented approach of the translation be-
tween visual and temporal representation. Max/MSP was
chosen because it has the ability to host Javascript, web
applications, and manage hardware connections. There are
three main categories of classes: grid representation classes,
sequencer representation classes, and intermediary classes
that are responsible for the mediation, representation, and
synchronization between the visual notation and the se-
quences (see Figure 4).

The grid object contains regions and the region class
contains cells. Each class has helper functions that query
whether an input parameter overlaps with its own represen-
tation. The region class contains logic for situations where a
region may overlap in such a way that it augment its shape
with the region being compared. Likewise, the sequencer
object contains sequences and the sequence class contains
notes. The sequence class contains methods for express-
ing shape array notation as indices for the sequencer and
managing the indices with the corresponding note objects.

Grid, region, and cell objects work to represent the visual
notation and logic. Sequencer, sequence, and note objects
represent the musical events. The InputManager and Out-
putManager classes manage the communication and data
representation between the application and the hardware,
or software, inputs and outputs. The Mediator class is pri-
marily responsible for bridging the visual and musical rep-
resentations, but is also responsible for handling the trans-
formations from gestural inputs to new shapes for creating
or manipulating patterns. As the Sequencer class runs the
Mediator class receives synchronization messages when in-
dividual notes are triggered that are resolved with the cor-
responding cells in the grid representation. When a Cell

is changed from active to non-active the Mediator class in-
forms the OutputManager and all software and hardware
connected is synchronized.

4.1 Sequencer
The Max/MSP patch created for this project implements a
polyphonic step sequencer using a phasor signal, modelling
the implementation presented in [13]. A central phasor is
used to keep track of the main beat clock, which is then
duplicated into a signal per sequence using the mc objects
(See Figure 6). Each signal undergoes a transformation of
rate to correspond to its subdivision using the rate object.
However, the implementation utilizes the newer what ob-
ject with Javascript code providing a list of event locations
corresponding to each event. The end result is still a series
of impulses and indices which are fed back to the Javascript
code for synchronization. The Max/MSP patch hosts a
P5.js sketch that can be used as both the interface and the
visual display of the sequence, in addition to synchonizing
with an Ableton Push controller, if it is connected at the
time.

Figure 6: A screenshot of the Max/MSP displaying the signal
flow, and live representation of the grid state.

5. SUMMARY AND FUTURE WORK
Grid interfaces are excellent at providing tactile interfaces
for expressing rhythms in a live running sequencer. The
ansiorhythmic grid notation system presented in this paper
demonstrates a tactic to allow performers to express com-
plex rhythms as a first order operation (ie. without ”menu-
diving”) without sacrificing the immediacy of the grid to
express and edit sequences quickly. Furthermore, this paper
has explored opportunities to compress the notation of iso-
metric rhythms into smaller portions of the grid, allowing
for a grid to represent many sequences simultaneously.
A proof-of-concept Max/MSP patch implements a flexible

polyphonic signal-based sequencer that can easily express
the complex and varying rhythms, while managing inputs
from hardware and software inputs, and synchronizing vi-
sual output. The current implementation provides the abil-
ity to switch modes, but many more modes can be added,
such as sequence chaining, while also exploring techniques
like gestures to switch modes[11].
There are many rhythms which are difficult or impossi-

ble to express with this notation, such as nested tuplets
and micro-timings. Nested tuplets provide an incredible
opportunity for expression, and the programming language
NestUp[15] provides a brilliant and compact notation for

their expression. While tuplets are easily expressed in the
ansiorhythmic grid notation, rhythms inside of a tuplet could
be imagined as a type of branching in an orthogonal direc-
tion, thought introduces potential collisions. While these
options are viable tactics, the loss of coherence in the nota-
tion indicates one of the many potential limits of the nota-
tion system.

This project will continue to ruminate on rhythmic ex-
pression with grids. We offer this tool and its thinking to
the reader to help them explore their own ideas to express
rhythms.

A github repository is provided at:
https://github.com/drart/gridquencer

6. REFERENCES
[1] R. Adeney and A. R. Brown. Improvising with grid

music systems. In Improvise: The Australasian
Computer Music Conference, pages 102–110, 2009.

[2] S. al-Dīn al Urmaw̄i. Kitāb al-Adwār [Book of Cycles].
Maws.il, A.H. 1103 (1692), Bagdad, 1695.

[3] R. Arar and A. Kapur. A history of sequencers:
Interfaces for organizing pattern-based music. In
Sound and Music Computing Conference, Stockholm,
Sweden, 2013.

[4] S. Barton. Circularity in rhythmic representation and
composition. In Proceedings of the New Interfaces for
Musical Expression Conference, pages 505–508, 2020.

[5] W. A. Buxton. There’s more to interaction than
meets the eye: some issues in manual input.
Human-Computer Interaction, pages 122–137, 1987.

[6] b. crabtree and k. cain. monome.
https://monome.org, 2006-present.

[7] A. J. Gander. Developing a Polyrhythmic Idiolect.
PhD thesis, The University of Sydney, 2017.

[8] S. J. Hunt. Exploring polyrhythms, polymeters, and
polytempi with the universal grid sequencer
framework. In Proceedings of the 15th International
Audio Mostly Conference, AM ’20, page 101–106,
New York, NY, USA, 2020. Association for
Computing Machinery.

[9] V. Malmberg et al. Iris: A circular polyrhythmic
music sequencer. Master’s thesis, Aalto University,
2010.

[10] A. J. Milne. Xronomorph: Investigating paths
through rhythmic space. New Directions in Music and
Human-Computer Interaction, pages 95–113, 2019.

[11] B. Rossmy, S. Unger, and A. Wiethoff.
Touchgrid–combining touch interaction with musical
grid interfaces. In Proceedings of the New Interfaces
for Musical Expression Conference, 2021.

[12] B. Rossmy and A. Wiethoff. Musical grid interfaces:
Past, present, and future directions. In Proceedings of
the New Interfaces for Musical Expression
Conference, 2021.

[13] G. Taylor. Step by step: adventures in sequencing with
Max/MSP. Cycling ’74, 2018.

[14] O. Vallis, J. Hochenbaum, and A. Kapur. A shift
towards iterative and open-source design for musical
interfaces. In Proceedings of the New Interfaces for
Musical Expression Conference, pages 1–6, 2010.

[15] A. Van Gils and S. Tarakajian. Nestup.
https://nestup.cutelab.nyc, 2020.

https://github.com/drart/gridquencer

	Introduction
	Background
	Examples of Grid Notations
	Creating Patterns
	Modifying Patterns
	Adjusting Pattern Phase

	Implementation
	Sequencer

	Summary and Future Work
	References

