
Mechanism
An artist-led, feminist design process for open technology tools.

Author:

Alex Leitch

Supervisor:

Prof. Emma Westecott

A thesis submitted in partial fulfilment of the requirements

for the degree of Master of Design

in Digital Futures

in the Faculty of Design of OCAD University

April 10, 2014

Alex Leitch 2014

This work is licensed under

a Creative Commons Attribution-ShareAlike 4.0 International License.

To see the license go to http://creativecommons.org/licenses/by/4.0/ or write to

Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,

USA.

http://www.alexleitch.com
https://twitter.com/emmawestecott
http://creativecommons.org/licenses/by/4.0/

ii

Copyright Notice

This work is licensed under a Creative Commons Attribution-ShareAlike

4.0 International License.

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even commer-

cially. The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following conditions:

Attribution — You must give appropriate credit, provide a link to the license, and indicate

if changes were made. You may do so in any reasonable manner, but not in any way that

suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute

your contributions under the same license as the original.

With the understanding that:

No additional restrictions — You may not apply legal terms or technological measures

that legally restrict others from doing anything the license permits.

iii

Declaration of Authorship

I, Alex Leitch, declare that this thesis titled, ’Mechanism: An artist-led, feminist design

process for open technology tools.’ and the work presented in it are my own. I confirm

that:

� I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

� I authorize OCAD University to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

� I understand that my thesis may be made electronically available to the public.

� I further authorize OCAD University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

Signed:

Date:

iv

Abstract

Ontario College of Art and Design University

Master of Design

Digital Futures

Mechanism: An artist-led, feminist design process for open technology tools.

by Alex Leitch

18th May 2014

This thesis examines what it means for technology to open, and how that open technology

may be applied in support of the arts. Drawing on Hélène Cixous’ ”Laugh of the Medusa”,

the paper proposes a feminist, inclusive design process that subverts imposter syndrome

by involving community engagement in the software development process, then uses that

method to develop software that powers narrative-focused FMV video games using Node.JS

internet technologies.

The design method addresses theoretical structures as well as pragmatic solutions, focusing

on the use of limited hardware to serve a captive portal and a web application to a limited

geographic space. Also examined is the concept of a “game jam” to develop content and

test new software systems. The paper then reviews the capital and scarcity implications

of such applications for serving new media works in galleries and geographically remote or

challenging exhibit contexts.

http://www.ocadu.ca

v

Acknowledgements

I wish to express my appreciation of my thesis advisors, Emma Westecott and Simone

Jones, without whose generous contribution of time and sensible advice this would be a

much weaker paper. I would also like to express gratitude to the Site 3 coLaboratory

community, who provided me space to work and a community to work with, and Bento

Miso - Dann Toliver, Cecily Carver, Jennie and Henry Faber expressly - for their technical

advice and their help in hosting No Jam 2. Hannah Epstein deserves my thanks as well for

being a fantastic collaborator. Thanks also to my editor, Kathryn Halloran.

To my personal community, many thanks for your patience with me for the duration of this

work.

vi

For Adina. . .

vii

TABLE OF CONTENTS

List of Figures x

1 Introduction: A Better Interactive Design Method 1

1.1 Designing Software to Power Experience . 1

1.2 Interaction and Presentation in Game Design 2

1.3 Initial Approach . 3

1.3.1 Artist-Led Collaboration with Hannah Epstein and game::play Lab . 3

1.3.2 Vera Frenkel, String Games, and Feminist Video Art 4

1.3.3 Software Development . 5

1.4 Community Based Prototype Design with Dames Making Games and Bento

Box-Miso: Overcoming Imposter Syndrome 7

1.5 Prototype Development: Hardware Installation and Display 9

2 Artist-Led Technical Collaboration 12

2.1 Design Research: Artist Collaboration . 12

2.2 Software Development Methods: Agile . 13

2.2.1 Full Motion Video Games and Mobile Interactive Screens 17

2.3 Game Engines . 20

2.3.1 Twine . 21

2.3.2 Multiscreen Video Technology . 22

2.3.3 Licensing . 23

2.3.4 Science Fiction Inputs . 23

2.4 Code as Context-Sensitive Writing . 24

2.5 Software Design . 24

2.5.1 screenPerfect Engine—Interface Layout 25

3 Industry Engagement and Community Based Research 27

3.1 Theory and Politics . 27

3.2 Cixous, Embodiment, and the Game Jam 29

3.3 Industry Engagement . 31

viii

3.3.1 Game Jams, A Design Method . 31

3.3.2 Dames Making Games and Game Jams 32

3.3.3 Bento Box-Miso . 33

3.3.4 No Jam 2: Video Video . 36

4 Prototype Development for Display Hardware 40

4.1 Client Server Model . 42

4.2 Public Installations . 42

4.3 Hardware Design . 44

4.4 Technical Display Concerns and the Public Private Internet 46

4.4.1 Subnod.es and Public Private Space 48

4.5 Distribution of Work . 49

5 Conclusion 51

5.1 Conclusion . 51

5.1.1 Reflection . 54

5.1.2 Next Steps . 55

A screenPerfect Installation Guide 62

A.1 screenPerfect Code and Documentation . 62

A.2 Device List . 62

A.3 Software List . 63

A.4 Installation and Site Construction . 63

A.4.1 Before Leaving For Site . 63

A.5 Troubleshooting . 64

A.5.1 On Start, Google Chrome Cannot Find Control Screen 64

A.5.2 The Control Device is frozen, or the videos are not changing. 64

A.6 Tidbits and Tech Notes . 65

B Game Jam Documentation 66

B.1 Interview Files . 66

B.2 Questions To Ask Game Jammers . 66

B.2.1 Games List . 66

B.2.2 Bug Discovery . 67

B.2.3 Features Requested by Game Jammers 67

B.2.4 Notes from committed jammers about screenPerfect 67

C Raspberry Pi Setup Documentation 68

C.1 Materials and Supplies . 68

ix

C.2 Background for Linux Commands . 68

C.3 Setting Up The Raspberry Pi . 68

C.3.1 Windows 7 SD Card setup and first boot 68

C.3.2 Configuring Raspbian . 69

C.4 Software Setup for External WiFi Access 69

C.5 Installing Node.JS . 72

C.5.1 Why Node? . 72

C.5.2 Installation Instructions for Node.JS 72

C.6 Testing Node . 73

C.6.1 Selecting Monitoring Software . 73

C.6.2 Installation of Node Modules . 74

C.6.3 Troubleshooting NPM installations 74

C.7 SSH via Direct Ethernet Connection

and WiFi Internet Access . 74

C.8 Backing Up the Raspberry Pi . 75

C.9 Mount Your USB Flash Memory Stick To the Raspberry Pi 76

C.9.1 Configuring Your Mount Drive . 76

C.9.2 How to Boot Mount External Memory 76

C.10 Set Up a wiFi Hotspot . 77

C.11 Configuring HostAPD . 78

C.12 Configuring DNS access via dnsmasq . 78

D Appendix D: MIT Licence and Research Ethics Approval 80

D.1 MIT Licence . 80

List of Figures x

LIST OF FIGURES

1.1 SNES Game Cartridge, 1995 . 7

1.2 A method for realizing artist-led technical collaboration. 11

2.1 screenPerfect software communication model 16

2.2 screenPerfect NoJam editor, Asset Population tab. 26

2.3 screenPerfect NoJam editor, Exit Population tab. 26

3.1 A branched tree of rooms from Twine. 35

4.1 Hannah Epstein psXXYborg at VideoFag, 1995 40

4.2 screenPerfect interaction model between client, server, and studio. 41

4.3 Hannah Epstein psXXYborg at FAC 2014, playthrough view 43

C.1 Raspberry Pi with functioning wiFi antenna 71

C.2 Raspberry Pi in Thingiverse case . 71

CHAPTER

ONE

INTRODUCTION: A BETTER INTERACTIVE DESIGN METHOD

1.1 Designing Software to Power Experience

Software is eating the world. Software is all around us. Software is a conversation and

software is a dictator.Computers manage an element of almost every interaction in North

America, from bus schedules to e-mail to bank reporting, to entertainment media of every

stripe. In 2014, much of our work and the majority of our promotion lives in the digital

world, and artistic works are no exception. Computers supply mechanisms to automate and

extend our ability to speak in repeatable patterns (Glanville, 2014), returning a multiplier

effect on even the most complex works.

The effective use of these tools requires a specific skill set, as unique as the skill set of using

a paintbrush, yet without the consistency: digital tools change all the time. How can a

designer be sure any given tool will be useful to anyone, once it’s made?

This paper addresses how we might bring a new kind of old conversation to software devel-

opment, derived from artist-led technical collaboration, to community prototype testing,

Chapter 1. A Better Interactive Design Method 2

to a standalone product. That result is a tool for making interactive video art into an open

format.

1.2 Interaction and Presentation in Game Design

In the context of this paper, my frame for the term ”art” is digital games as interactive

experience. In this case, technology design and game design must be considered together,

in that the design of an experience is dependent on its technology.

That games are art, or can be art, has been popularly contested. Famously, in 2005, Roger

Ebert took the position that games could never be art (Ebert, 2005). He recanted this

statement in 2010, with a public admission of bullheadedness and a confession that he

simply did not wish to engage with games as a form (Ebert, 2010). The debate has been

reasonably settled, to my mind, with the rise of conferences such as Different Games NYC

and Indiecade that foster expansions to an art form with experiences at all investment levels

to explore a variety of human experience. Manufacturing those experiences within a game

is a challenging task, not least because game production can be expensive and thus closed.

Games, particularly the subset of video games known as triple-A or AAA, are expensive to

make and require a team of people to produce. Triple-A is the term used to refer to major

popular game releases by large studios, products such as Titanfall (2014) or Assassin’s

Creed. This can be seen as restricting the degree to which the stories these experiences

communicate can be personal. A large budget requires a large payback. While there are

counter-examples, many triple-A games need to be able to make back their production

budget, which restricts their intended audience to those who will pay to play, an audience

apparently percieved at the corporate level to be overwhelmingly white, cis-gendered males.

Games as self-aware as 2013’s Saint’s Row 4, (‘Saint’s Row Four’, 2013) are few and far

Chapter 1. A Better Interactive Design Method 3

between. SR4 cleverly presents balanced gender roles and skin colours, yet still emphasizes

that violence and exploration are the main interaction system of its world. Despite growing

interest and participation in gaming by female or queer identified players, these perspectives

remain almost uniformly absent and underrepresented in Triple-A.

This creates a design challenge: How to encourage a different game-making perspective

entirely?

There are resistances: Unity, a 3D action engine, has been used to produce Gone Home

(‘Gone Home’, 2013), a work about a missing family mainly told through examining objects

and listening to music. More narrowly, the Twine engine is designed to provide branched,

highly-stylized text narrative to a web browser and it has been adopted by a user base

interested in telling detailed stories that are highly personal - the sort of work that cannot

always be addressed by games with a bigger budget. The engine sets the form of the

interaction but not the content presented by the interaction.

Artist-led collaboration is one possible approach, especially if it is followed by writing an

engine to reproduce those working practices and simplify them for new users.

1.3 Initial Approach

1.3.1 Artist-Led Collaboration with Hannah Epstein and game::play Lab

The initial code of screenPerfect came about as part of a collaborative research and de-

velopment project in OCADu’s game:play lab. The research looked to produce a vision of

how dual and multi-screen game artworks might work going forward. The original software

powered a game called psXXYborg (Epstein, Leitch & Yee, 2013), made by Hannah Ep-

stein under the supervision of Emma Westecott. From there, I became curious as to how

Chapter 1. A Better Interactive Design Method 4

we could transform the engine software to include game-editing tools, to encourage a wider

range of video artists to use the software. This became the basis of the initial portion of

my thesis work, the screenPerfect engine.

The idea following on the engine itself is that it should be able to be installed and maintained

using internet technologies for simple inter-device communication, while still being able

to disconnect and install the work in a variety of specialized contexts that are free of

conventional resources, such as access to the broader communications network implied by

the term ”internet.”

1.3.2 Vera Frenkel, String Games, and Feminist Video Art

Video art has been popular since the mid-seventies in Canada, the very moment that the

VCR made any kind of interactivity possible. The most important of these works from

the point of view of the Mechanism project is String Games, Vera Frenkel’s production of

long-distance networked art in 1974. String Games emphasized the possibilities of parallel

video communication over the then-new Bell telephone network. In it, Frenkel explored

real-time video transmission with the metaphor of a networked cat’s cradle game.

In this, Frenkel was part of a movement in Canadian work to overcome the distance involved

in the construction of a Canadian art scene. Canada, always huge, rarely well-connected,

was beginning to use phone lines to form a sense of self.

Though I read up on this work and communicated with V-Tape, an archive of Canadian

video artist’s work, I did not find any collaborators in the older generation of video artists

in Canada. It is possible that I did not find many collaborators within this group because

the software has been in development for the duration of the project, rather than being

complete for use, and this requires a specific type of patience from collaborators. It is

Chapter 1. A Better Interactive Design Method 5

also possible that, before early demonstration artefacts turn up, it can be a challenge to

communicate the use of new software to artists who have already developed their working

patterns.

Once the software is in a more polished state, it is possible that it will be of interest

to members of the video art community, such as that which surrounds Toronto’s Trinity

Square, LIFT, and V-tape collectives. Several members of the community have expressed

interest in the software to date, so it is possible it will see an uptake in future.

1.3.3 Software Development

The initial software of this project was developed as a response to the lack of privacy and

commercial control of various shared media sources online.

Part of the motivation for this engine is that commercial engines tend to prioritise com-

mercial distribution and mass experience, whereas artist installations tend to prioritise the

direct experience of a specific work at a specific time. Although there are commercial FMV

engines, they do not permit easy access to multi-screen synchronisation and cannot be ac-

cessed offline. This meant that presenting the works developed using these systems meant

agreeing to advertising, or to sign up for an account with the company, rather than being

able to turn on an appliance and serve an art work.

This technology is built to be served offline using technologies more commonly seen online.

This is made possible through use of the Node.JS software framework, which, combined

with Google’s Chrome browser (a variant of webkit), permits web applications to be used

the same way people have historically used desktop variants. The benefit of this is that

web technologies are straightforward to use to connect devices, where local installations

Chapter 1. A Better Interactive Design Method 6

traditionally rely on the resources of only their specific machine. The code of screenPerfect

is written wholly in javascript via the Node.JS software framework.

No Jam 2 featured both an editing segment and a re-architected version of screenPerfect

that uses Bento Box-Miso’s Daimio dataflow language (Box, 2013), designed mainly for

open use on the internet. After the jam, the games were collected and screenPerfect was

forked to become two separate engines. The original engine was retained for displaying

works to that point. A new engine called iV was created by Bento Box-Miso to promote

ease of access for Dames Making Games, a feminist community group run at Miso by the

same developers who worked on the engine.

The toolset can then be released for new users to create new works by packaging the ap-

plication to run on a USB stick, conceptually similar to game cartridges from the 1990s

(Figure 1.1). This means that artists will be able to install and display their own games

independent of any central server, free of what the technician might decide is the context

of the work. This is intentional and has been included to help resolve many of the issues

inherent in the storage and display of networked digital artworks. By having an independ-

ent, repeatable system that lives on a single SD card and uses identical, widely-available,

afforable hardware, it becomes straightforward to both archive and recall works, as each

version can be stored and then loaded independently, if required.

This reliable installation mechanism also permits the display of completed works even in

remote contexts – a forest, for example, or a desert (Figure 1.2). This is distinct from other

systems in that it is built using contemporary technologies but also in that it is built with

an eye to permanent, disconnected installations that rely on contained software and simple,

contemporary script languages, rather than on translations of preexisting software such as

Java.

Chapter 1. A Better Interactive Design Method 7

Figure 1.1: SNES Game Cartridge, 1995

1.4 Community Based Prototype Design with Dames Making Games and

Bento Box-Miso: Overcoming Imposter Syndrome

In order to refine screenPerfect to a tool for popular use, rather than a specific engine

requiring a technician, I partnered with game::play Lab, Dames Making Games and Bento

Box-Miso. We collaboratively organized a game jam - a type of design charette, intended

to produce demonstratable games in a compressed window of time - that would both test

the tool and introduce new game makers to the possibilities of FMV.

The critical theory that underlies this practice is a combination of French poststructural-

ism - Hélène Cixous in particular - and contemporary writing on video games and the

history of women in technology. By producing the software and content with the in-

put of a local feminist collective, Dames Making Games (http://www.dmg.to), and as

part of a wider feminist research network (SSHRC-funded Feminists in Games (http:

//www.feministsingames.com)), I have grounded the work in a social justice driven practice

which encourages women to take part in their own lives by learning how to interact with

machines and communicate with the broader world.

Dames Making Games’ mission is to organize women-focused game jams and support women

http://www.dmg.to
http://www.feministsingames.com
http://www.feministsingames.com

Chapter 1. A Better Interactive Design Method 8

gamemakers. New, straightforward game-making tools provided with the intent to reduce

the barriers to producing a game or interactive work, shifting the focus from frustration

with game engine’s normal assumptions about design to an emphasis on the user’s content.

By removing barriers such as the requirement for complex scripting, we hope to expand

the diversity of experience that can be expressed by new game-makers.

This is an explicitly feminist goal, derived in part from Hélène Cixous’ ”Laugh of the

Medusa,” in which she describes the necessity of women writing to produce themselves.

Cixous’ concept describes a space where women required to write, even using imperfect

language or tools, least they be written out by the dominant voices that surround them.

The écriture féminine is also about insists on rebellion with a sense of play, which I find

resonant with the practice of feminist, open game jams for learning and self-expression

(Cixous, 1976).

The embodiment emphasized by Cixous is tied to display of personal narrative. Whilst

many game works wish to leave the body behind, or optimize it to an ideal form in a play

avatar, almost all of the games produced at NoJam 2 had a strong association to the body.

Max Lander’s PornGame explored what it means for a computer to desire interaction, in

a sexual sense. Brittney Oberfeld’s OM explored the embodiment of consciousness and

a desire to ”slow down,” Kate Whyte and Kara Stone’s Cyborg Goddess presented an

adventure through the loss of a leg and the replacement with supplementary systems to

become a cyborg or a goddess. Grimoire, by Katie Foster and Mikayla Carson, detailed a

woman’s descent into madness following the discovery of an ancient text.

This seems to be a refraction of the ability of code to make the written tangible. When

you touch a screen, writing – interpreted or compiled – controls what happens next. In

this context, the écriture fémininecan involve a physical change in the environment. The

Chapter 1. A Better Interactive Design Method 9

ideas are vividly expressed in relationship mainly to sexuality but desire runs deeper than

that: desire can include the desire for agency, for authority over oneself and one’s life, or

to be seen as competent even by oneself. In this Cixous provides a resistance to imposter

syndrome.

Imposter syndrome is common in technological fields, where women form a small percentage

of professional game developers - some estimate as low as 4%, where IGDA numbered 9%

in the last public study released - in 2007 ‘Game Developer Demographics: An Exploration

of Workforce Diversity’, 2014. Despite this, women consist of a larger percentage of the

gameplaying public. The ESA states that women form at least 31% of the game-buying

public, almost double the number of teenaged males (‘Essential Facts About The Computer

Game Industry’, 2014). The gap between developer and player implies that it is important

to provide a way to encourage women to express themselves in this new game form, least

women be seen as an alien construct within technological fields.

1.5 Prototype Development: Hardware Installation and Display

The final section of this paper addresses thoughts on hardware installation and the display

of digital works. digital works are difficult to maintain and display because they frequently

rely on external systems, such as the public internet, to be consistent and always available.

This has proven to be challenging in practice. Rather than relying on a central remote

server, in this chapter I address reasons to provide solid hardware in an appliance format

for application display, rather than relying on external resources that may or may not be

available.

This chapter is perhaps the most politically informed, as Chapter 2 is informed by the idea

that artists should be permitted control over their works and encouraged to produce works

Chapter 1. A Better Interactive Design Method 10

using contemporary media. The production of affordable, repeatable installations based

on the not-for-profit Raspberry Pi platform means that artists who have participated in

web application game jams can then own their own works in the form of common memory

and display those works with minimal personal outlay on hardware. This section also asks

that we consider our reliance on major internet corporations and how we might separate

the computers we use to produce art from the computers we use to serve that art to our

audience.

Chapter 4 also presents a number of display scenarios that make use of interesting contexts

that do not have ready access to major power or consistent internet. It also presents the

idea that the context of the display can extend the value of the work in meaningful ways.

Chapter 1. A Better Time-Based Installation 11

Figure 1.2: A method for realizing artist-led technical collaboration.

CHAPTER

TWO

ARTIST-LED TECHNICAL COLLABORATION

2.1 Design Research: Artist Collaboration

screenPerfect began with an artistic collaboration, where as a programmer, I worked closely

with an artist to reproduce the technical elements of a working practice in order to make

it available to other artists in a similar field. This specificity allowed us to develop a very

simple tool that solves a minimal set of problems in a tidy fashion, while expanding the

repeatable part of a single artist’s process - the idea of how linked videos should connect

together on multiple screens - to a tool that can be used by other artists. Arts-led research

promotes a point of view distinct from the typical business-forward viewpoint, preferring

to ask ”how might we” than to say ”this is how we will.” As a developer, it can be difficult

to tie work to a given set of problems, or to ensure it has value to an audience outside

oneself. Therefore, collaboration gives access to a set of problems that may seem easy but

are frequently technically complex and challenging - and therefore rewarding.

Chapter 2. Artist-Led Technical Collaboration 13

2.2 Software Development Methods: Agile

The agile method of software development is based on the Agile Manifesto, much as the

underlying feminist elements of this project are based on the Cyborg Manifesto and Cixous’

manifesto for écriture féminine. Agile is a response to previous software design practices,

called ”Waterfall,” where software frameworks are laid out and heavily documented in ad-

vance of production. Waterfall methods are popular in major software companies, which

rely on extensive documentation to communicate between business units. Waterfall em-

phasizes planning over software production or delivery deadlines.

The idea of agile was described in 2001 by a group of software developers (‘The Agile Mani-

festo’, 2001). By using an agile practice of responsive, user-centered design, screenPerfect’s

interaction model was designed through a series of discussions with key stakeholders, fol-

lowed by iterative code revisions to a rough first prototype. This can be seen as a hacker-

oriented means of development, reflecting Sadie Plant’s statement in Zeros and Ones that

reverse engineering - ”starting at the end, and then engaging in a process that simultan-

eously dismantles the route back to the start” (Plant, 1997). Agile specifically emphasizes

individuals and interactions over processes and tools, working software over comprehens-

ive documentation, customer collaboration over contract negotiation, and responding to

change over following a plan (‘The Agile Manifesto’, 2001).

The screenPerfect development process emerged from a series of linked videos on YouTube,

as laid out by Hannah Epstein. We then reviewed strengths and weaknesses of this model:

the ability for a large audience with public interlinked video files but the downside of long

load times and ads on pages detracting from the video content. In addition, this required

uploading films at low quality to a remote server. From the initial prototype, we asked how

the process could be improved, particularly for an exhibition context.

Chapter 2. Artist-Led Technical Collaboration 14

The game processes laid out in Youtube were converted to a ”how might we” - a series of

static files presented as interactions in still film. Hannah Epstein laid out an idea of how the

video screens should work together. I confirmed that this system was theoretically possible

using websockets - a communication protocol - loaded into a Node.JS application. From

there, I wrote a Node app that served basic video files to multiple browser screens simul-

taneously. This started as a chat application, serving text to three screens simultaneously

over websockets. We then replaced the text with video files, layered a control structure

over the videos using plaintext JSON files to replace a reliance on a database structure.

A database was not originally required for psXXYborg, the original game built by Hannah

Epstein using screenPerfect, or later games using that exlusive engine, because installing

a database is an additional step that nontechnical end users cannot be relied upon to find

straightforward. Every step of the development process was intended to result in code that

is legible to anyone who can read javascript, while being absolutely straightforward to use

for a nontechnical video author.

In development conversations, it became clear that YouTube, in addition to having many

distracting advertisements, was very slow to load. This is a problem with reliance on

external networks: they cannot be as fast as locally served files. Epstein specifically em-

phasized speed, smooth loading, and video based in static rather than streaming or live

files. These needed to be served within a closed environment to an attentive audience.

Scripting languages are especially good at this type of development work. I reached out

to other developers and asked how they would solve this problem. They came back to me

with a variety of answers - some used PHP, some used Python, all of them relied on JS for

their front end. In researching different ways to solve the basic problem - passing a variable

back and forth through wireless technology to select two on-screen videos at almost the

Chapter 2. Artist-Led Technical Collaboration 15

same time - I discovered the Node.JS software framework, a software package designed to

permit developers to use Javascript on both the server and client side of a web application.

From here, I designed a client-server-control model - Figure 3.1, the screenPerfect Software

Communication Model. This relied on an interlinked system of hardware and software

designed to respond to what resources it found available in its load space.

Epstein relied on the h.264 format for her video production, which necessitated an early

reliance on the Safari web browser, as HTML5 video does not yet have a settled public

codec at the time of writing. Due to conflicts relating to codec patenting, one of many such

conflicts that underly the ”free” internet, Safari supports H.264 where Chrome supports

webm via the V8 engine, the same engine that supports the Node framework. Webm is a

compact video format, which results in smaller file sizes and lower bandwidth costs, which

eventually affects both load time and playback lag on client machines.

Figure 2.1 describes the ultimate screenPerfect program code flow, which relies on an

always-open two way communication channel based on the relatively novel websockets com-

munication protocol. Essentially, on software boot, a given browser loads a client window

and a control window, which open a channel to the server and a passthrough to one an-

other. When something changes, the other channel - always open - displays that change

to all paired clients. What is being changed in this case is what game data is dynamically

loaded to a single screen at any given time. The flow chart describes how that software’s

communications patterns travel on a user interaction with a given touchpoint.

Chapter 2. Artist-Led Technical Collaboration 16

Figure 2.1: screenPerfect software communication model

Chapter 2. Artist-Led Technical Collaboration 17

2.2.1 Full Motion Video Games and Mobile Interactive Screens

FMV (Full Motion Video) games are an old format, relatively speaking. FMV began

almost as soon as chapter selection became available on the laser disc systems of the 1980s,

with 1983’s game Dragon’s Lair by Rick Dyer and Don Bluth, the first entry in what

would become a strange sub-genre. FMV was successful through 1984 but quickly failed

due to the expense of laser disc systems and the relative cost of game development and

play. The 1985 Halcyon system cost $2000 - adjusted for inflation, $4,347.88 in 2014 -

and offered only two games. The most well-known FMVs outside of Dragon’s Lair are ,

released in 1992, and Phantasmagoria, from 1996. Night Trap went on to become part

of the congressional hearings of offensive video game material along with Mortal Kombat,

the first widely popular fighting game to allow people to rip out one another’s spines.

Phantasmagoria was better known as the first adult-oriented game released by Roberta

Williams, famed for her involvement in Sierra’s King’s Quest point-and-click adventure

game series (Wolf, 2012).

FMV and branched narrative games differ from cartridge-based action games in that they

do not typically feature the same immediate feedback of a score going up and the instant

player controls of a more typical 2D or 3D action game. Instead, players select what will

happen next at key intervals. Older games are easy to display, so long as working hardware

can be found, because they rely on consistent materiel for installation. Digital interactive

forms, particularly those on the internet, live in a more malleable format. They can change,

or be taken down, at any time. The gameplay experience of a console game can be had

even when disconnected from the internet – in fact, the Nintendo 3DS, a pocket console,

outsold every other system on the market in 2013. It is speculated that its success is due

largely to the fact that the 3DS is a portable system that does not connect to the broader

Chapter 2. Artist-Led Technical Collaboration 18

internet unsupervised (Seitz, 2014). This reliability is something that is rare to find in more

complex computers: sometimes, as argued by Don Norman in ”The Design of Everyday

Things” (Norman, 2002), it is best to have a single thing do one thing really well.

FMV games remain interesting enough to engage fans. This is partly due to the well-

documented nostalgic appeal of certain forms of entertainment, digital games in particular

sparking sites such as videogamenostalgia.com and hashtags on Tumblr like #videoga-

menostalgia or http://fuckyeahchrono.tumblr.com/. FMV have been recreated using You-

tube and preserved from laser discs and DVDs (‘LASERDISC ARCADE PROJECT AKA

CLASSIC FMV GAMES 2.0’, 2014). Phantasmagoria can easily be found in complete

playthrough on Youtube, where the annotation system makes recreating a point-and-click

environment trivial (https://www.youtube.com/watch?v=oAXC-MwfpHA). Nonetheless,

they were heavily systems-dependent and are tricky to develop, given the difficulties sur-

rounding copyrighted video works and public distribution - how to transmit something that

contains so many different pieces of video information?

Another example of portable electronic interaction is the smartphone. Initially this tech-

nology seems not so great for bringing people together in the same space, as the privacy

of the phone has been seen as undermining or distracting. It is possible to see this instead

as a source of potential: people examine things one-on-one with their devices and then will

share them with their peers.

Smartphones are inherently private systems - a category of hardware referred to as a ”per-

sonal device” - used in public places. Personal devices have all kinds of content on them,

from games to e-mail to tax returns. Apps, paid for and downloaded, are understood to

be private even when their terms of licence imply that they are the sole property of the

developer. Websites are public places one can ”visit” on a phone, an external resource

http://fuckyeahchrono.tumblr.com/
https://www.youtube.com/watch?v=oAXC-MwfpHA

Chapter 2. Artist-Led Technical Collaboration 19

supplied to a personal locale. This leads to a set of assumptions on behalf of interaction

developers: an application is a private thing, paid for, and downloaded to a private space

within the phone, whereas a web page is a public resource that can be viewed in private on

a phone. A smartphone is also a single encapsulated controller, with all necessary inputs

provided by its touch surface. For interactive artwork, this means that some assumptions

can be made.

The first is that the audience of an interactive art piece is likely to be familiar with how

to interact with a touchscreen but also may be distracted. It cannot be assumed that they

will download or pay for an application sight unseen for the sake of art, because that would

constitute an expenditure of resources without reference but they can be asked to go to a

web page. People commonly use their phones in public. Therefore it seems reasonable to

ask them for the minimal engagement of looking at something specific, this time art served

only within the gallery.

There are already games that aim to subvert this separation. Systems have been built to

take advantage of the power of pocket computers. A notable effort is ”Spaceteam,” (Smith,

2013) a ‘Simon-Says’ game for teams of up to four players. The application pairs to itself

across phones by using a common network connection, having players in the same physical

space cooperate to pilot a star ship. This allows players to make use of a device with which

they are already comfortable to cooperate and share an experience.

This shared experience makes it possible to privately host a public space. A private host

is a computer that is unreliably connected to the broader internet - perhaps occasionally,

perhaps not at all - which serves an application using technologies that make it appear to

be part of that internet to people who access the resource using their phone. These are web

applications, served in private, to a public but small gallery space, to preserve the context

Chapter 2. Artist-Led Technical Collaboration 20

of the application while relying on the user’s own resources in the form of a phone to give

the work a personal context within the public-private site. In this way, a private site which

cannot connect to the broader internet can take advantage of the design model of internet

communication to serve works without them being decontextualised to anyone who wishes

to navigate to them more broadly.

In this way, web art is no longer the broad exploration of net.art but becomes instead a

preservable, repeatable installation.

screenPerfect, a web application served locally, takes advantage of an assumed set of smart-

phone users in galleries having access to the internet in their pockets. The internet is both

bigger and smaller than the wider network – the internet that includes Google and other

multi-national internet corporations. Rather than relying on the external resources of re-

mote servers, screenPerfect provides a private wifi point and what is called a ”captive

portal” to let players pair with one another and the server, control a large screen, and

interact with a piece of video art in a localized area. This means that an artist can control

the exhibition space for their work, design the experience of the work, and ensure that their

audience will experience the work in a specific context. It also ensures that technicians can

access the underlying engine should something go wrong during the installation.

2.3 Game Engines

A game engine is a collection of software designed to make it possible for a team of artists,

developers, musicians, and producers to work together to produce a complete digital exper-

ience. Traditionally, game engines are used to produce 2D or 3D experiences using assets

Chapter 2. Artist-Led Technical Collaboration 21

such as 2D sprites or 3D player character/interaction models, backgrounds, interaction as-

sets - crates, for example - music, and scripts in a programming language to tie all of these

together into gameplay.

Some popular professional engines at the time of writing are Unity3D, which features native

mobile integration and ease of scripting in both Javascript and C#; Crytek, which comes

with many high-end 3D resources preloaded for high definition graphic support; the Unreal

Engine, which is quite stable and useful to experienced teams that prefer more control over

their work.

There are popular hobby engines that de-emphasize programming as well, such as Game-

Maker, which is prized for PC compatibility, Game Salad for OSX, and Construct 2, which

is PC-only but has a powerful engine to manage game physics and interactions. These en-

gines all assume a certain type of player interaction: they are designed to enable designers

to produce specific types of games, such as a ”shooter” or a ”platformer,” similar in style

to the Call of Duty franchise or Nintendo’s Mario series. The interactions available are

easily understood as a language of action by their players, provided players have previous

experience with digital gameplay.

2.3.1 Twine

Twine is a game engine that allows designers to build HTML5 text narratives that branch

into a choose-your-own-adventure game. screenPerfect was inspired in no small part by

the popularity of both Twine and video on the internet. Twine encourages expressive

type styling and elements of multimedia, including music, and game screens but does not

require these elements for a complete interactive narrative. Twine did not yet support video

narratives in 2013.

Chapter 2. Artist-Led Technical Collaboration 22

The Twine engine was popularized by DIY gaming celebrity Anna Anthropy in her 2012

book Rise of the Videogame Zinesters (Anthropy, 2012). Anthropy’s book calls for a

dramatic DIY practice to articulate personal experience in video games. She strongly

promotes Twine as an easy way to begin the effort of designing personal games. Since

then, hundreds of Twines - the adopted term for narratives built in Twine - have seen

release.

2.3.2 Multiscreen Video Technology

Dual screen technology, or more accurately, multi-screen synchronous web technology, is

one of the big new ideas being heavily backed by Google in 2013. As a consequence, its

Chrome browser has been designed to support software developed with a specific suite

of frameworks, many of which are wholly supported by Google. This being said, Google

supports Node and Chrome both, so multi-screen technology using web browsers is open

to people for no more investment than a new programming language. screenPerfect relies

on Node.JS, which is based on Google’s V8 engine.

The architecture of screenPerfect is wholly new but the concept is based on the Dataton

Watchout system, which encourages producers to develop large multi-screen single video

experiences on custom hardware. Dataton Watchout costs approximately $40,000 dollars

per installation, which makes an inexpensive alternative appealing from a creative stand-

point. screenPerfect permits people to use existing hardware to synch multiple videos to

one set of controls. This is also distinct from another related tool, ChromeCast, that allows

people to wirelessly pair a television with a touchscreen for control and consumption of

the touchscreen at a larger size. ChromeCast requires an ecosystem of development that

is presented as inclusive chiefly to those already invested in the startup scene. Therefore,

these tools have been built from a position of inclusivity. By releasing them through a group

Chapter 2. Artist-Led Technical Collaboration 23

of largely non-technical artists, I have chosen to pursue a research path that deprivileges

the role of the technology compared to the role of the artist within a given system.

2.3.3 Licensing

One of the ways these problems are dealt with is through licensing. The Creative Commons

at creativecommons.org expresses their mission as follows: ”Creative Commons develops,

supports, and stewards legal and technical infrastructure that maximizes digital creativity,

sharing, and innovation.” It is therefore an appropriate open standard licence for creative

practice. A preferred licence for software development is the MIT Licence, which is closer

to the Gnu Public Licence but does not preclude making money from one’s open source

work.

2.3.4 Science Fiction Inputs

My own idea for how this project would work is derived from Cory Doctorow’s Pirate

Cinema, which features a scene wherein characters climb trees then use projectors already

built into their phones, assemble a movie theatre from nothing more than sheets and ropes

in the trees (Doctorow, 2012). I feel this sort of mesh-networked sharing is much more likely

than a continued reliance on the surveilled internet for sharing copyrighted and copyrighted-

material derived works. Since I could not find a system that would permit this type of

sharing on the internet, I felt that this project would provide a good opportunity to build

one.

Chapter 2. Artist-Led Technical Collaboration 24

2.4 Code as Context-Sensitive Writing

As a creative project, code is a tricky thing to pin down. It must say something structurally,

yet it reveals the internal architecture of its authors. Programming leaves loose ends. An

excellent piece of software is likely to require input from a wide array of specialists in graphic

design, interface development, and logic. There is an inevitable tendency to produce flaws

- bugs - that cause the program to fail. Once complete, it is likely that finished software

will fall out of fashion. Just as there is no way to call a piece of writing finished, because

another word can always be added or cut loose, code is subject to scope creep.

Code lives, like writing, in context and within an ecosystem. Code answers to its context. As

Alexander Galloway says in his book ”Gaming: Essays On Algorithmic Culture,” without

the machines that run it, code is without consequence Galloway, 2006. Within those

machines, code may have a concrete effect on the world around it. For that reason it

continues to be valued. To code is to attempt to write a way of addressing the world, a

single way that must take into consideration all the assumptions of people who tried to

address the world before, and, with future-proofing, the world after.

2.5 Software Design

A software interface is the part of the software that a person interacts with directly where

a software engine is the part of the code that detects and defines what a computer can do

with that interaction. The interface of software is just as important as the engine, however,

because a poorly designed interface will confuse a user thereby rendering the experience of

using the engine potentially opaque. screenPerfect’s roots are as a software engine, which

Chapter 2. Artist-Led Technical Collaboration 25

takes user action and then does things with it. The user interacts with the interface that

speaks to the engine which then returns values to whichever interface the user has selected.

2.5.1 screenPerfect Engine—Interface Layout

In the case of screenPerfect, the interface is laid out in three parts. The first part is the

setup screen, the second is the control screen, and the third is the generic client screen.

The setup area is by far the most complex area. It is used by game designers to load their

media to the database and lay out the links between those files. This is the essence of a

game made in screenPerfect: which choice will a player make to navigate the system as

designed by the artist?

The further screens are the client and control screens. screenPerfect supports up to ten

client screens and ten control screens, although the interface only exposes a polyphony of

client windows, while restricting artists to a single control set for simplicity’s sake.

The layout of screenPerfect’s editing tools did not work very well for authors who were

not already part of the prototyping process. Therefore, as part of the extension of the

software for NoJam, Bento Box-Miso reauthored the editing interface of the software. The

final editing layout is clean, though less expressive than the original design. Rather than

hidden tabs, everything is displayed on launch. This permits authors to see their video files

during the entire game editing process, which greatly speeds game creation. What follows

are screencaptures of the pre-fork game jam variant of screenPerfect.

Chapter 2. Artist-Led Technical Collaboration 26

Figure 2.2: screenPerfect NoJam editor, Asset Population tab.

Figure 2.3: screenPerfect NoJam editor, Exit Population tab.

CHAPTER

THREE

INDUSTRY ENGAGEMENT AND COMMUNITY BASED
RESEARCH

3.1 Theory and Politics

Cixous’ ”Laugh of the Medusa” predates the computer age but perfectly and predictably

describes the opportunity present in programming - which is a form of writing - within

”Laugh of the Medusa”:

”Write, let no one hold you back, let nothing stop you: not man; not the imbe-

cilic capitalist machinery, in which publishing houses are the crafty, obsequious

relayers of imperatives handed down by an economy that works against us and

off our backs; and not yourself.” (Cixous, 1976)

In this passage, Cixous chides her readers for not giving themselves the permission to

write, because writing is reserved for those who might be published. This is similar to

game-makers who might not produce, merely because the engines are closed, or distribution

unlikely. Women have a long history in technology. Ada Lovelace, daughter of Lord Byron,

has been identified as the first programmer (Plant, 1997). The ability to put rules in order,

Chapter 3. Industry Engagement and Community Based Research 28

to work backwards and forwards from a desired result all along the path of the machines,

is a characteristic much sought for in both programmers and game designers. Both roles

are responsible for rule systems that will dictate a predictable result.

In a straightforward way, ladies may not possess uncomplicated positions of economic ad-

vantage within a patriarchy: to do so would be to ”have it all,” a famously complex desire

which is reanalyzed every year in popular press, most recently by Anne-Marie Slaughter in

The Atlantic (Slaughter, 2014). The balancing factor is housework and the social expect-

ation of family, which still places a gendered burden on women to produce both children

and home. This system of expectations, divided between household and the potential for

earned income, re-creates itself in each new trade as it arrives, in fields as far apart as

World War II factories (Summerfield, 1984), Victorian mills (Baskerville, 1999), and lately,

code factories in Manhattan and San Francisco (Schulte, 2014). Computers have quickly

become a good job with a good chance to better one’s life, and just as quickly have moved

from being women’s work to being a heavily masculinized field (Ensmenger, 2010). This is

unfortunate, as it is presently popular to assert that in the future, there will be two types

of lives:

”...those who tell computers what to do, and those who’re told by computers

what to do.” Marc Andreesen, Andreesen Horrowitz 2012.

Within such a system, people discouraged from understanding technical roles, their uses

and disuses, could then be expected to be mainly among those being told what to do. This

does not seem to be a pleasant future, inclusive and positive for all people, and as such,

perhaps the vision could be broadened.

Computers are a tool, and the way that the tool is presented, held, and used, dictates the

results. A computer - a machine for automating an interaction - can be made simpler or

Chapter 3. Industry Engagement and Community Based Research 29

more complex to use. The device may be changed to an amplifier of force, made more

opaque, or made clearer for those who choose not to learn to code but can still understand

systems of logic. ”If this then that” is not a complex instruction set. The complex instruc-

tion sets should, rather than being encouraged to control people, be developed to be under

the control of people.

screenPerfect has been designed to present the idea that a simpler system will result in

a more diverse body of work. It dictates nothing whatsoever about content, presenting

instead a simple system of switches that permits the author the broadest possible control

over simplified interaction sets. It is implied that these interactions will lead to a coherent

narrative but it does not dictate what content an artist might use. The voice of the artist

is brought to the forefront of the work, rather than the voice of technology.

By simplifying the process of game design and displacing its nexus from the computer to

other design tools, technology is repurposed to be one tool among many. This displaces

technology’s primary position and refocuses the work on the intent of the artist. This is

an implicit system of resistance to the narrative of technology: people can once again tell

computers what to do, and extend themselves via their tools.

3.2 Cixous, Embodiment, and the Game Jam

Many of the participants of the game jam produced, with the simple yet powerful tools

provided, narratives centered on their own embodied or disembodied experience. The only

group to resist doing this were the younger OCADu students who came to the jam via a

game design practice, rather than a filmmaking, animation, photographic or other digital

interest.

Chapter 3. Industry Engagement and Community Based Research 30

Of the games produced and finished, PornGame by Max Lander is directly about the

experience of sexuality as it applies to a machine. Grimoire is about a loss of personal

agency following the finding of a ”grimoire” or textbook. Kill Fuck Marry was about bad

decisions when it came to dating and sex, OM about a practice of embodied mindfulness,

and Cyborg Goddess went straight to Donna Haraway’s ”Cyborg Manifesto” in a literal

interpretation. Glitch.95, though mainly interested in the glitch aesthetic, is a depiction

of the beginnings of an internet relationship. Puppet Story is about a genderless creature

coming to life, Pinocchio-esque - or perhaps more Galatea, though that is projection.

This is simply an observation but a comparatively high number of personal and body-centric

stories came from this jam, which was nominally about the use of a tool to express a new

format of interaction software. This seems tied to Cixous’ assertion that ”You can’t talk

about a female sexuality” and her immediate follow-up that ”time and again I ... could

burst forth with forms much more beautiful than those which are put up in frames and sold

for a stinking fortune” (Cixous, 1976). This is the core of what games critics are discussing

when independent games, or new art forms of any type, are being spoken about publicly -

the potential expression outside commercial benefit. Cixous’s conception of masturbation

and writing as a unified activity practiced in secret can be easily associated to the idea of

imposter syndrome, the thought that one could not possibly be ”good enough” to break

into a creative or high-level industry (Chance & O’Toole, 1987).

Imposter syndrome is a major problem in the technology industry, and in games even

moreso: because code is a high-level creative practice, with a great deal of material reward

when done properly, and games are similar, the stakes are high. I have conflated games and

code because both are systems of organized rules: game design is a type of code, where one

purses conditioned response and engagement through good user experience design. It is

easy to back off from both practices or to pursue them exclusively as a hobby, rather than

Chapter 3. Industry Engagement and Community Based Research 31

believe in them as a trade. Does one wish to join the commercial order? Is it necessary to

be validated, to have commercial success, or is it simply another demand on the work, that

the work sell to prove that it is fundamentally worthwhile? These questions are outside

the scope of this paper, although my personal opinion is in line with Cixous: whether the

money follows or not, a plurality of voices in any creative practice is important for its own

sake.

Cixous’ throwaway line, of ”arid millenial ground to break” seems especially poignant in

light of the generational nickname of the jam participants.

3.3 Industry Engagement

3.3.1 Game Jams, A Design Method

A game jam is a variant on the hackathon, which is a type of prolonged effort at taking an

idea from concept to finished product in a limited period of time. Game jams and hack-

athons are both derived from the design charette or parallel prototyping process (Martin,

2012), a method in which participants rapidly prototype a design idea over a short, intense

period of time. Charettes stem from the architecture field, and benefit from the idea of a

concentrated sprint of effort to complete a given project in a narrow window, thus prevent-

ing the project from creeping too far out of scope. A jam - or hackathon - gives registered

participants a common area and space to set up their own equipment and supplies, and a

theme. The group members come to the event with an idea and possibly some resources -

video files, sound capability and so on - and use the jam time to assemble a game.

Generally, a game jam will produce a panoply of small game ideas with fleshed-out mech-

anics but simple art and sound design in order to demonstrate a possible path forward for

Chapter 3. Industry Engagement and Community Based Research 32

a device or piece of software, which will then be polished at a later date, and presented

to the indie community either online or at a social event. Sometimes these works will

then go on to be finished commercial products, or are intended for further consumption

at major conferences such as Indiecade or the Game Developer’s Conference, GDC. These

conferences can further the careers of the developers by providing access to funding bodies

and publishing houses (whether traditional or online), or in Ontario, the Ontario Media

Development Corporation. Other funding sources can include research groups, via research

funding bodies. By framing game jam development as research, participants can be released

from the need to make commercially appealing works. In the case of Dames Making Games

and screenPerfect, funding came from the Feminists in Games project, headed by Jen Jen-

son of York University, and GRAND FRAGG, a research project dedicated to expanding

the diversity of voices represented in gaming. This research funding supported the research

goals of this collaboration led by Professor Emma Westecott at the game::play Lab.

Game jams can be time consuming to prepare, as they involve a great deal of communication

on the part of the organizers. In order to run a jam, one must open the application period

well enough in advance to ensure a large cohort of skilled participants who are likely to

be interested in producing content with the available tools, or interested in exploring new

tools on offer. Typically, jam attendees have a theme suggested - for example, ”Mother

May I” or ”Snacktember” jams organized by Dames Making Games - and then participants

bring their own preferred technology to produce a fast prototype over a weekend.

3.3.2 Dames Making Games and Game Jams

Dames Making Games (DMG Toronto) is a non-profit community organization

based in Toronto dedicated to supporting dames interested in making, playing,

and changing games. In short, we want to build an inclusive and engaged

Chapter 3. Industry Engagement and Community Based Research 33

local community of game-makers. Our community isn’t women only but it is

women-driven. from the DMG.to website, accessed November 27, 2013

Dames Making Games (DMG) is a community group in Toronto that work to promote wo-

men in video games. They have been funded in part by FiG (http://www.feministsingames.

com) and in part by member donations. I am a founding director and advising director

with the organization, which has given me ready access to a test audience for my ideas with

regards to development tools. DMG uses the game jam method to introduce women and

allies to simple game development tools. This provides a straightforward introduction to

concepts of computer logic and programming for some people, to video game art develop-

ment for others, and video game sound production for still others. Some develop system

mechanics, some design whole levels or game narratives.

The point of DMG is to promote access to this field to people other than the 18-to-35

year old males who form the primary demographic for the video game industry (‘Essential

Facts About The Computer Game Industry’, 2014; ‘Game Developer Demographics: An

Exploration of Workforce Diversity’, 2014), in the hopes that a diverse population of game

makers will produce a diverse population of games. DMG is interested in screenPerfect

as it provides an underlying template for a game-making system that might be easier for

newcomers to use than other freely available game engines.

3.3.3 Bento Box-Miso

Game jams require both space and people who are interested in working on games. A

themed game jam, such as No Jam 2, which was designed to test specific software, requires

a specific audience and support. In order to access that space and community, I worked

with the Bento Box-Miso co-working facility in Toronto, with OCADu’s game:play lab

http://www.feministsingames.com
http://www.feministsingames.com

Chapter 3. Industry Engagement and Community Based Research 34

and Emma Westecott, and with Bento Box-Miso, a development company that runs Bento

Box-Miso as a not for profit co-working facility.

Bento Box-Miso is a not-for-profit community coworking facility that serves as home for

both Bento Box-Miso, a local development hub, and the Dames Making Games. It is also

the hub of a great deal of Toronto’s independent game development community. Bento

Box-Miso offers professional support and development advice to game developers. I felt

there was a good match between their professional skillset and my research interests. DMG

regularly run a jam in November and felt that screenPerfect - new software designed to be

usable in a short time frame to people with extant skills - would be a good match for the

audience associated with the organization.

Bento Box-Miso was also at the time seeking an engine that could display the capabilities of

their new programming language, Daimio, which offers users the ability to reprogram work

on the fly in the browser without being a trusted network source. Therefore, I accepted

their help and their offer of hosting the jam in return for giving them permission to fork -

copy, reproduce, and extend - my engine under their name.

As a pair, Dann Toliver - architect of Daimio - and I worked together to clean screenPerfect

to speak to the Daimio dataflow language. Bento Box-Miso then released a refactored

version of the code in time for No Jam 2, so that our participants could get a clean version

of the software to work with. This was challenging for me, as it involved a great deal of

trust and moved the software away from how I had initially envisioned the user interface

(UI). In particular, we needed to scrap an early idea for a branched narrative ”tree” display

similar to that of the Twine engine, which was not included, although it had been planned

all along (Figure 3.1).

Chapter 3. Industry Engagement and Community Based Research 35

Figure 3.1: A branched tree of rooms from Twine.

Chapter 3. Industry Engagement and Community Based Research 36

3.3.4 No Jam 2: Video Video

DMG have a great deal of experience running jams. In addition to a skilled community, the

ongoing success of research in the community is dependent on participation by community

members’ voluntary engagement in participatory research. The premise of DMG is that

people learn well by doing something new in a supportive environment and that they can

carry the experience of a supportive learning environment forward to effect real change in

the game development landscape. game::play Lab is researching the outcomes and process

of this type of development practice. By partnering with DMG, I gained ready access

to their community and they gained access to my software. One of the most common

difficulties with game jams is that the short timeframe can cause a lot of frustration to new

non-programmers: they spend a lot of time wrestling with tools, rather than generating

the content of their games. This is a theme that came up again and again in research

interviews, most notably and clearly presented in Appendix A’s DVD support by Team

Grimoire - Katie Foster and Mikayla Carson:

”I’ve come to jams three times now and I never do it very well... the new tool

caused me to change my concept and execution but not by much. It’s learning

on the first day if I can make my idea work with that tool and then teaching

myself that tool, because usually I have no idea how to use it.... I like the

constraints that have been put on the project, since it’s made me pursue new

things I’d never pursue. ... It’s like five rooms, they all hook straight to the

next one, I’m not intimidated about putting it into the tool. ... that’s what’s

so awesome, I’m so used to having to learn ALL new skills, every time I jam,

and then I get really frustrated and I don’t want to do it any more, so this time

I’m like ’I know how to do all this stuff already.’”

Chapter 3. Industry Engagement and Community Based Research 37

The reduction in technical barriers to entry resulted in five complete games coming out of

the No Jam process, one of which was exhibited at the Art Gallery of Ontario.

After we received No Jam applications, we went through them to choose participants who

seemed interested the theme and the software restrictions, sent out acceptances, ordered

food, and set the dates. Applicants were provided diaries to record their working process

over the course of the week. The first weekend of the jam consisted of workshops from a

variety of specialists to provide direction in how to think about the software and the jam

process as research.

The applicants were then sent home for a week to work on their video projects. They were

asked to document their ongoing process with one another on a private Google Group.

Most participants ignored this request, which left us with relatively little online material.

On the actual weekend, we asked that participants arrive with the majority of their video

content and design prepared. There were uneven responses to this request, which strongly

affected the ability of participants to produce a finished game by the end of the weekend.

I interviewed each group early in the process and then later polled them with informal

questions regarding their experience with the software. The interviews are documented

in my electronic support materials in named files. During interviews, I asked participants

about their background, what they expected from a game jam, their previous experience in

game or media design. I also asked whether they found the restrictions of working with the

screenPerfect software package useful, damaging, easy, or difficult. The main responses of

interest were not about the software at all, although Mikayla Carson clearly stated that as

a filmmaker she found screenPerfect much less frustrating than traditional game engines.

The responses of most interest involved how people think about producing media, their

Chapter 3. Industry Engagement and Community Based Research 38

frustrations with traditional computer work, and their experience with collaborative game

practice.

I asked each group to name themselves, talk about their background, and tell me what

they expected out of a game jam. Then, if appropriate, I asked what their experience

with the software was and how it compared to other game-making engines and software.

The interviews with each group proved diverse. Responses are recorded on my electronic

supporting materials in the appendices, under the folder ”Game Jam Interviews.”

The group experience with the software proved interesting. Accomplished filmmakers had

a better time with it but the most surprising response was from young, self-identified

gamemakers, who rather than exploring what was possible within the context of the software

tools, decided instead to try to use them to reproduce existing game types, many of which

were totally incompatible with the software design. Of particular interest was the group

who tried to reproduce a classic Japanese roleplaying game within the context of video: this

did not work so well. The group continued to work on their design even after it became

apparent it was unlikely to go well. The game itself remains unfinished but deserves mention

as the most unique and possibly stubborn effort.

Despite this, No Jam was a success, with nine groups producing diverse works on ideas

such as how to express a practice of mindfulness, how to work with pornography in a way

that forces the viewer to interact with what’s happening on screen, exploring systematic

violence against women, exploring narratives of imprisonment, magic, and in one unique

case, permitting a puppet to escape a toy box.

In setting up No Jam, we did present at least one workshop on the importance of personal

narrative in producing creative work, which may have influenced the results. Game jammers

mostly described their interest in producing work that was finished. No Jam resulted in at

Chapter 3. Industry Engagement and Community Based Research 39

least five ”finished” works, which have since been included in several exhibitions around the

city, including the December and January Toronto Long Winter series. The finished works

can be found on the supporting materials DVD under the folder ”screenPerfect games.”

CHAPTER

FOUR

PROTOTYPE DEVELOPMENT FOR DISPLAY HARDWARE

Figure 4.1: Hannah Epstein
psXXYborg at VideoFag, 1995

Chapter 4. Prototype Development for Display Hardware 41

Figure 4.2: screenPerfect interaction model between client, server, and studio.

Chapter 4. Prototype Development for Display Hardware 42

4.1 Client Server Model

The chart in Figure 4.2 describes how screenPerfect’s hardware serves a connection to a

local cell phone, while occasionally obtaining software updates from the internet or from a

direct upload when the resources are available for that upload. This is a useful model for

public exhibition, because it does not require the device to be always-online with access

to remote system resources. Instead, the software to run the artwork is stored locally and

serves as both its own webserver and its own wifi hotspot, so that users can pair with the

device on their own cell phone and interact with the art in public.

4.2 Public Installations

During the course of this project, games made with screenPerfect had many public outings.

We installed psXXYborg in a variety of spaces. There were a number of design approaches to

the construction of those spaces. Hannah Epstein created many variations on space design,

in including a straight projection on mylar, a whole-room space that would encompass

the user in different projected, linked screens, and ultimately a portable ”confessional”

booth. The first variant of this is displayed in Figure 4.1, a custom-painted cargo van

which we displayed at Videofag in Kensington Market as part of the Queer Arcade with

Vector Art—Game Festival as part of their 2013 show (http://www.vectorfestival.org/).

More recent exhibitions of psXXYborg have been built into a tent, which can be more easily

displayed indoors. The psXXYborg tent has been exhibited at Long Winter in December

2013 and at the Feminist Art Collective’s annual conference at OCADu in 2014 (Figure

4.3). This helped to test and refine the list of design constraints for a successful work.

http://www.vectorfestival.org/

Chapter 4. Prototype Development for Display Hardware 43

Figure 4.3: Hannah Epstein
psXXYborg at FAC 2014, playthrough view

Chapter 4. Prototype Development for Display Hardware 44

4.3 Hardware Design

The success of a project like screenPerfect is dependent not only on its software, or on its

ease of use, but on how easy it is to install on-site. The software is dependent on open wifi

and high bandwidth to communicate with client devices, a stable computing system, and

a variety of computer interfaces. Ideally, the software is open and will work according to

standards published by the W3C. In reality, it is incredibly difficult to build a new software

system to work on broad platforms.

The following is a list of complications and assumptions built into the design of this hard-

ware, based on public display experiences:

1. Data service to an external source cannot be assumed to be available.

2. The exhibit is assumed to be displayed in public.

3. The environment is assumed to be meterologically hostile - hot or cold, wet or very

dry, and to be hosting at least one party, such as an art opening.

4. The exhibition is assumed to be supervised by technically untrained people.

5. The emphasis of the work should be on the work’s display, rather than on a laptop

screen.

6. The collectors of the work are assumed to have extremely limited resources for rugged

workstations.

7. Any host-provided data carriage for external connection - wifi - is assumed to be

overloaded by default.

Chapter 4. Prototype Development for Display Hardware 45

These are all very real constraints that impact display of interactive digital art. We use

computers for work and play, but we still separate our lives into periods when we pursue

one or the other. There are still boundaries between our personal and public lives. To use

the same machines to display art as we do to build the work is to reduce the work from

something approachable and consciously displayed to any other tab in a computer. It is

my view that digital works especially must be seen within their exhibition context to be

understood.

Because the display system needs to be stable and specfic but does not need to be used for

development, I began to look into appliance-appropriate hardware. There are a number of

low-power ARM-controller based hardware platforms on the market at the time of writing,

including the Arduino, the Beagle Bone, and the Raspberry Pi. All of these systems are

designed to help artists make interactive works that take advantage of computing power for

expression. The Arduino is a popular system for learning to build electronic interactions,

the Beagle Bone a full-featured Linux computer, and the Raspberry Pi has come out of an

idealistic foundation that hopes to encourage people to learn to program and work with

ultra-simplified computing systems.

The Raspberry Pi is my choice for building a hardware installation system to support

screenPerfect. The Pi plugs directly into a television set for a monitor, uses Debian Linux

for package control, and can store its entire operating system and dependent software on

an SD Card - easy to image. Package control means that when one installs software on

Debian, the software tends to maintain its own dependencies, which reduces the amount

of time a programmer spends adding and removing libraries to get something simple to

work. Where an Arduino would require an entire secondary shield to access the internet,

the Raspberry Pi is a full computer out of the box, able to access the internet while still

Chapter 4. Prototype Development for Display Hardware 46

being useful from the command line. In addition to this, the computer is the size of a credit

card, which makes it straightforward to install in an artistic location such as a van or tent.

The Raspberry Pi as a platform is also affordable, at $35 for a Model B with ethernet port

and 512Mb of RAM. The Raspberry Pi foundation is a not-for-profit formed to support

the opening of technical education to a broad range of children in the UK and overseas.

This fit with the ideological stance of game::play Lab and the DMG, as well as my personal

politics: that people should be able to use their tools as they see fit. Technology should

serve its users, rather than requiring the user to serve technology.

4.4 Technical Display Concerns and the Public Private Internet

screenPerfect’s technical display challenges have been embedded in limited systems, such

as a reliance on institutional wireless, designed to block filesharing, which also block peer-

to-peer experiments such as screenPerfect’s server from connecting to its client computers.

This resulted in a need for a portable wireless hotspot to serve the application reliably, as

in addition to blocking institutional routers, too many users would overwhelm the service.

This provided a direction for my primary development to take: the project needed a com-

puter that served both its own web application and provided its own infrastructure, from

being turned on to when it was turned off, which did not require any kind of specialized

setup for display. In addition, I began to consider how screenPerfect might exist in public

space without the requirement of a ”smart” screen or any kind of specialized interaction

equipment.

People are willing to use their smartphones publicly, but mainly to access the external

internet, or messaging services while they are on the move. This led me to consider how

people interact with the internet publicly and to consider topics of privacy and public space

Chapter 4. Prototype Development for Display Hardware 47

within the context of how these problems have already been solved by galleries and coffee

shops wishing to offer their clientele data services to promote engagement.

In public spaces, internet is supplied by wifi, which comes through a specific type of router

known as a ”captive portal.” A user will walk into a shop, attach to a network, and ”sign”

an agreement to make use of the wifi within that space.

Normally, wifi will then give them access to the external internet - the internet as supplied

by a major ISP. The Raspberry Pi installation of screenPerfect is instead a captive portal,

which simultaneously supplies a wifi hotspot and a server that supplies information to that

hotspot, without providing external access to the broader internet. This is similar to the

pioneering 2013 Eyebeam project Subnod.es, in which users pair to a captive portal which

is also a server, supplying access to an entirely private chat room, which is available only

to users on the network supplied by its own captive portal.

The first issue addressed by this approach is that there is an inherent contradiction between

downloading a site-specific piece to a personal device when the installed context is a core

component of the aesthetic experience. Downloading applications to a smartphone seems

invasive, particularly if those applications are experimental or site-specific, as I think that

screenPerfect games are when they are at their best. The next is that web applications are

very much not user-specific - they can be experienced anywhere while they are on the open

web, even if their content is intended to be restricted to a specific type of installation, or

requires it for best use. By serving the application locally, there is no reliance on an outside

pipe. A copy of the game can be sold, customised, and stored in a collection, if such is

desired, or installed in any kind of specific cabinet for later use.

Chapter 4. Prototype Development for Display Hardware 48

4.4.1 Subnod.es and Public Private Space

This project has a precursor using similar technology built at Eyebeam in New York in 2013.

Subnod.es uses a captive portal to display a chat client to only the local environment. The

differences between screenPerfect and subnod.es are substantial, although mainly located

within the code. Subnod.es relies on an external DNS being made available via the actual

subnod.es software and depends on a different collection of software to serve the portal

proper. It is also built such that those library dependencies are inseparable from the main

project script.

The chief concern of subnod.es is that it was built as a response to concerns about commu-

nications privacy in North America under the NSA. Specifically, the author of subnod.es

is concerned that people behave differently when they are watched, a subset of the con-

cerns generally associated with panoptica and totalitarianism. While I have not specifically

structured screenPerfect’s Art Portal to address these concerns, it has been built to be

largely private. It serves an application to a limited selection of a public space.

The assumption of screenPerfect is that galleries have limited resources but that people

who go to art galleries almost certainly have access to a smart phone, which is a form of

private space. Smart phones are people’s own homes and are built to assume that they will

stay with their owners at all times. This means that to install an app is to ask a lot of

a viewer: specifically, it is to ask someone to bring an application into their private space

without getting to sample it first. In contrast, serving that same application on the broad

internet is to entirely delimit the context the art may be experienced within, which reduces

its scarcity value to almost nothing while simultaneously removing the curator’s ability to

set the context of an exhibition experience. This means that it is unlikely an artist can be

Chapter 4. Prototype Development for Display Hardware 49

compensated in any conventional sense despite their large audience. It also means that the

curation of the exhibit is no different than the ”curation” found on Tumblr.

A better outcome might be to make a limited public space available in a private context.

This is what we are doing when we ask that people open their phones and look at a

website. The internet is the new public space. By presenting a web application using

public technology within the exclusive context of the gallery - or desert, or forest - we take

control again over how our art is presented. A gallery or exhibit space can be set up very

specifically for the benefit of an audience in a way that the internet in general cannot be.

Web technologies are a good solution for this because they are uniform and open in the

way that more custom projection design software is not.

This sense of limited private space is key to the code-switching that human communication

relies on. We are not the same people in public as we are in private. We are again different

people when we are in different publics, from work to the street to school to the gallery.

Technology that sensitively addresses these different code contexts seems likely to benefit its

authors and users both by permitting the integration of the personal focus with a personal

device with the context of a semi-public facility or ”safe space” for engagement with the

art work.

Safe space is space that has been constructed with an inclusivity policy to promote ex-

ploration and community-building within minority groups. It is intended as a systemic

resistance to implicit violence.

4.5 Distribution of Work

An optimal route to distribute both screenPerfect and the works produced with the tool is to

compile them on an SD Card using the node-webkit package, which permits the distribution

Chapter 4. Prototype Development for Display Hardware 50

of web applications as desktop software without losing the multi-device communication

channels supplied by a webserver. This could then be distributed digitally over the internet.

Futher, screenPerfect has already been forked. The system is publicly available on Github

to permit anyone to extend the software. The Node.JS package can be compiled to include

Windows, Linux, and OSX distributions, as well as being installed directly to a Raspbian

- Raspberry Pi Debian - operating system, which would then launch the game or tools on

boot.

CHAPTER

FIVE

CONCLUSION

5.1 Conclusion

Artist-led research results in an exploration of not only what is considered popularly reas-

onable but also what is possible. By anchoring that practice to community feedback from

a group of invested users, we can expand software from beyond its original audience to a

new section of the population and then work through the specific display and installation

requirements for that group. By making the software with a specific user in mind, we

both ensure demand and reward involvement with the work; by committing to that work

as ”real,” we can produce new directions for design. Demand here is constructed not as

capitalist massive or unlimited demand but instead the niche requirements indicated by

the new, broader, connected public space. It is possible to have a small overall demand be,

in aggregate, worthwhile.

screenPerfect has already been forked into new tools to work towards the likelihood that

gamemakers will pursue new video works. Bento Box-Miso’s iV fork, which discards dual-

screens but encourages branched FMV narratives to be pursued within DMG, was launched

at Feb Fatale 2 in early 2014 and has seen some popular uptake. This is an important marker

Chapter 5. Conclusion 52

of the overall success of this embedded research. A possible direction for this software is

to package it so that games built with it can be installed both locally and remote at the

same time in public contexts. The installation of those games in public contexts will be

supported by further work on hardware systems for easy, portable, open hardware, that

can then be reliably exhibited in new contexts. Distribution of the completed work can

take place over the internet as a pre-configured operating system, which, similar to a game

cartridge, means that users and gallery specialists need only do a minimum of support work

to install, repair, replace and update digital works produced with this system. In addition,

this software can be stored on SD cards with backup Raspberry Pi, ready for installation

for an indeterminate period of time into the future.

In Cixous’ ”Laugh of the Medusa” (Cixous, 1976) she states that to be considered real,

women must write for themselves. This document extends the notion of the written self

to the world of code, and through it to computers and the contemporary technological

landscape: one must write after one’s own interests in order to represent a possibility for

what one believes can be real. I have done this by writing a tool that permits an array of

interested parties to produce games without a reliance on conventional scripting or game

assets. I have then extended screenPerfect with hardware to support a straightforward

installation path using materials from a not-for-profit foundation and open-source software,

rather than a limited system reliant on strictly commercial ties.

This prototype emphasises allowing an audience to experience digital works as easily as

possible in a context controlled by the artist. Works produced using screenPerfect can be

displayed anywhere a series of screens and a single server can be set up. This emphasis

on experience moves the interaction sphere of art and gaming into the world. screenPer-

fect’s impact is most felt at night, outdoors, or in temporary installations. However, using

screenPerfect, it is possible to display video-art and collaborative gameplay anywhere at

Chapter 5. Conclusion 53

all. These are the new/old/new exhibits, the one-time-only parties, the experience that

happens in a hard to access place yet leaves no marks for future visitors to interpret, such

as Nuit Blanche in Toronto, or Burning Man in Nevada. At the heart of screenPerfect is the

idea that we can pull away from artificial distance and have instead on-site participation,

unique experiences that project real, contemporary art into real, contemporary spaces.

Throughout the development of screenPerfect, I asked a series of questions about capital,

monetary and otherwise, creative practice, and preservation in the digital context. This

is an effort to directly address the debate about games as art by circumventing it: as we

can see by visiting Cixous, any form of creative practice can be dismissed by the dominant

voice. A debate about whether a given creative practice is worthy of the name ”art” is in

fact a form of access control. By testing a piece of software developed through one artist’s

working practices with a broader audience, we can add resilience to the code. This helps

to ensure that it serves both the intended process and supports further experiments. This

permits broad access to expression on behalf of new voices while simultaneously stress-

testing the work itself. By giving people open tools, we give them the ability to express

themselves: if what they would like to say is then something personal, it is my view that

there is value in that.

We live within a system of value and valuation. To overcome all elements of that system

from within is unlikely - an assertion supported by mathematicians like Gödel as much as

feminists like Audrey Lorde - but we do not need to overcome the system to be able to

circumvent it. We can choose how much to engage with the system, on what terms. Within

that effort we may find answers to specific problems.

Chapter 5. Conclusion 54

5.1.1 Reflection

This project has been optimistic, and hopefully useful to some participants, but ultimately

fell short of my goal of having a truly usable piece of technology. Unfortunately, it is simply

too difficult to host data-rich applications without relying on major cloud services, which

rarely are as affordable as promised.

The software and hardware documentation have been published, and have seen heavy up-

take by members of the Node.JS and Raspberry Pi communities, but not so much by the

video game set. I believe this is because it is not really technology that limits us, but in-

stead our expectations of our own systems. Although my collaborative video-artist partners

loved the system, I focus far more on the efforts by the game designers to try to build a

JRPG with an inappropriate tool: people decide what they want to do with what you give

them. The tool can imply some uses, and make those uses straightforward, but ultimately,

it is up to the user to determine what gets made.

Although I would like to value the small, it turns out that the most open tools are the ones

with the widest audience possible. A wide audience permits a wide support community,

and learning from one’s peers is still the easiest way to get involved in technology. As such,

although this technology is free, open-source, and has been forked at least twice, I am not

convinced of its longevity or ultimate practicality: it is challenging to host large quantities

of video on the open internet. I am optimistic it will see use solving tricky technical display

problems in places like Nuit Blanche, rather than that it will see mass uptake for video art

as a form.

Chapter 5. Conclusion 55

5.1.2 Next Steps

The software that backs Mechanism has already begun to see uptake, conversion, and

distribution. It has been used by Jim Munroe during his artist residency at the Art Gallery

of Ontario to form a new FMV work, the first of its kind for the gallery. A variant of the

software, referred to as a ”fork,” has been in development at Bento Miso in the form of

the iV engine, which is intended to promote open development for new artists in the video

game field. I have been approached by members of V-Tape looking to engineer a simpler

interface for interactive video works, and been able to help with some questions involving

what an interface could look like, and how to make one that really is responsive.

The hardware for the project, particularly the pocket web-server, I plan to use to power

web application demonstrations to employers and clients for the foreseeable future. It is

a challenge to display new and exciting technology to a limited audience, and I feel the

raspberry pi is an excellent platform to do so. Plug it in, turn it on, and away it goes.

It could be used to run a massively different set of video screens, or just to have more

interesting personal experiences in gallery spaces.

As open-source software, it is pleasant to see some of my ideas continue in the work of

others. I expect that there will be other uses for this, beyond the exhibitions of psXXYborg

at VideoFag in 2013 and Eastern Bloc in 2014. The software is no longer only mine, and it

will be exciting to see where it goes next.

REFERENCES

A list of works cited within this text.

Anthropy, A. (2012). Rise of the videogame zinesters: how freaks, normals, amateurs,

artists, dreamers, dropouts, queers, housewives, and people like you are taking back

an art form (Seven Stories Press 1st ed.). New York, USA: Seven Stories Press.

Baskerville, P. (1999). Women and investment in late-nineteenth-century urban canada:

victoria and hamilton, 1880-1901. Canadian Historical Review, 80, 2.

Box, B. (2013, November 23). Iv. Retrieved from https://github.com/jennie/iV

Chance, P. R. & O’Toole, M. A. (1987). The imposter phenomenon: an internal barrier to

empowerment and achievement. Women and Therapy, 6, 51–64.

Cixous, H. (1976). Laugh of the medusa. Signs: Journal of Women in Culture and

Society, 1 (4), 875. Retrieved from http://www.dwrl.utexas.edu/∼davis/crs/e321/

Cixous-Laugh.pdf

Doctorow, C. (2012). Pirate cinema. New York, USA: Tor Teen.

Dunne, A. & Raby, F. (2013). Speculative everything. Boston, USA: Massachussetts Insti-

tute of Technology.

Ebert, R. (2005). Vide games can never be art. Retrieved from www.rogerebert.com/

rogers-journal/video-games-can-never-be-art

https://github.com/jennie/iV
http://www.dwrl.utexas.edu/~davis/crs/e321/Cixous-Laugh.pdf
http://www.dwrl.utexas.edu/~davis/crs/e321/Cixous-Laugh.pdf
www.rogerebert.com/rogers-journal/video-games-can-never-be-art
www.rogerebert.com/rogers-journal/video-games-can-never-be-art

References 57

Ebert, R. (2010). Okay, kids, play on my lawn. Retrieved from www.rogerebert.com/

rogers-journal/okay-kids-play-on-my-lawn

Ensmenger, N. (2010). Making programming masculine. In E. by Thomas J. Misa (Ed.),

Gender codes: why women are leaving computing (pp. 115–141).

Epstein, H., Leitch, A. & Yee, S. (2013). Psxxyborg. video game. OCADu game::play lab.

Canada:OCADu.

Galloway, A. (2006). Gaming: essays on algorithmic culture (electronic mediations). Min-

neapolis: University of Minnesota Press.

Glanville, R. (2014, January). Cybernetics. Lecture at OCADu.

Homans, M. (1986). Bearing the word: Language and female experience in 19th century

women’s writing. Chicago, USA: The University of Chicago Press.

Martin, B. (2012). Design charettes. In B. Martin (Ed.), Universal methods of design :

100 ways to research complex problems, develop innovative ideas, and design effective

solutions (pp. 58–59). Beverly, Ma.

Norman, D. A. (2002). The design of everyday things. USA: Basic Books.

The Agile Manifesto. (2001). Retrieved from http://www.agilemanifesto.org

Gone Home. (2013). video game. The Fullbright Company. USA.

Saint’s Row Four. (2013). video game. THQ, Volition. USA: THQ.

Essential Facts About The Computer Game Industry. (2014, February 24). Retrieved June

11, 2013, from http://www.theesa.com/facts/pdfs/esa ef 2013.pdf

Game Developer Demographics: An Exploration of Workforce Diversity. (2014, Janu-

ary 12). Retrieved October 1, 2005, from http://archives.igda.org/diversity/IGDA

DeveloperDemographics Oct05.pdf

LASERDISC ARCADE PROJECT AKA CLASSIC FMV GAMES 2.0. (2014, March 14).

Retrieved from https://www.youtube.com/playlist?list=PL80FE4E85EF2A41EB

www.rogerebert.com/rogers-journal/okay-kids-play-on-my-lawn
www.rogerebert.com/rogers-journal/okay-kids-play-on-my-lawn
http://www.agilemanifesto.org
http://www.theesa.com/facts/pdfs/esa_ef_2013.pdf
http://archives.igda.org/diversity/IGDA_DeveloperDemographics_Oct05.pdf
http://archives.igda.org/diversity/IGDA_DeveloperDemographics_Oct05.pdf
https://www.youtube.com/playlist?list=PL80FE4E85EF2A41EB

Bibliography 58

Plant, S. (1997). Zeros + ones: digital women and technoculture. London: Fourth Estate

Ltd.

Schulte, B. (2014, March 14). The new domesticity vs. ambition. Retrieved July 22,

2013, from http://www.washingtonpost.com/blogs/she-the-people/wp/2013/07/22/

the-new-domesticity-vs-ambition/

Seitz, D. (2014, March 19). The 3ds. Retrieved January 17, 2014, from http://www.uproxx.

com/gammasquad/2014/01/3ds-sales-numbers-show-real-power-gaming-lies/

Slaughter, A.-M. (2014, March 7). Why women still can’t have it all. Retrieved July 13,

2012, from http://www.theatlantic.com/magazine/archive/2012/07/why-women-still-cant-have-it-all/

309020/

Smith, H. (2013). Spaceteam. Sleeping Beast Games. USA. retrieved from http://www.

sleepingbeastgames.com/spaceteam/

Summerfield, P. (1984). Women workers in the second world war: Production and patri-

archy in conflict. New York:USA: Routledge.

Wolf, M. (2012). Encyclopedia of video games: the culture, technology, and art of gaming.

Santa Barbara: USA: ABC-CLIO.

http://www.washingtonpost.com/blogs/she-the-people/wp/2013/07/22/the-new-domesticity-vs-ambition/
http://www.washingtonpost.com/blogs/she-the-people/wp/2013/07/22/the-new-domesticity-vs-ambition/
http://www.uproxx.com/gammasquad/2014/01/3ds-sales-numbers-show-real-power-gaming-lies/
http://www.uproxx.com/gammasquad/2014/01/3ds-sales-numbers-show-real-power-gaming-lies/
http://www.theatlantic.com/magazine/archive/2012/07/why-women-still-cant-have-it-all/309020/
http://www.theatlantic.com/magazine/archive/2012/07/why-women-still-cant-have-it-all/309020/
http://www.sleepingbeastgames.com/spaceteam/
http://www.sleepingbeastgames.com/spaceteam/

BIBLIOGRAPHY

A reading list of relevant works consumed during the production of this text, in whole or

in part.

Anthropy, A. (2012). Rise of the videogame zinesters: how freaks, normals, amateurs,

artists, dreamers, dropouts, queers, housewives, and people like you are taking back

an art form (Seven Stories Press 1st ed.). New York, USA: Seven Stories Press.

Baskerville, P. (1999). Women and investment in late-nineteenth-century urban canada:

victoria and hamilton, 1880-1901. Canadian Historical Review, 80, 2.

Chance, P. R. & O’Toole, M. A. (1987). The imposter phenomenon: an internal barrier to

empowerment and achievement. Women and Therapy, 6, 51–64.

Cixous, H. (1976). Laugh of the medusa. Signs: Journal of Women in Culture and

Society, 1 (4), 875. Retrieved from http://www.dwrl.utexas.edu/∼davis/crs/e321/

Cixous-Laugh.pdf

Doctorow, C. (2012). Pirate cinema. New York, USA: Tor Teen.

Dunne, A. & Raby, F. (2013). Speculative everything. Boston, USA: Massachussetts Insti-

tute of Technology.

Ebert, R. (2005). Vide games can never be art. Retrieved from www.rogerebert.com/

rogers-journal/video-games-can-never-be-art

http://www.dwrl.utexas.edu/~davis/crs/e321/Cixous-Laugh.pdf
http://www.dwrl.utexas.edu/~davis/crs/e321/Cixous-Laugh.pdf
www.rogerebert.com/rogers-journal/video-games-can-never-be-art
www.rogerebert.com/rogers-journal/video-games-can-never-be-art

Bibliography 60

Ebert, R. (2010). Okay, kids, play on my lawn. Retrieved from www.rogerebert.com/

rogers-journal/okay-kids-play-on-my-lawn

Ensmenger, N. (2010). Making programming masculine. In E. by Thomas J. Misa (Ed.),

Gender codes: why women are leaving computing (pp. 115–141).

Galloway, A. (2006). Gaming: essays on algorithmic culture (electronic mediations). Min-

neapolis: University of Minnesota Press.

Homans, M. (1986). Bearing the word: Language and female experience in 19th century

women’s writing. Chicago, USA: The University of Chicago Press.

Martin, B. (2012). Design charettes. In B. Martin (Ed.), Universal methods of design :

100 ways to research complex problems, develop innovative ideas, and design effective

solutions (pp. 58–59). Beverly, Ma.

Norman, D. A. (2002). The design of everyday things. USA: Basic Books.

The Agile Manifesto. (2001). Retrieved from http://www.agilemanifesto.org

Essential Facts About The Computer Game Industry. (2014, February 24). Retrieved June

11, 2013, from http://www.theesa.com/facts/pdfs/esa ef 2013.pdf

Game Developer Demographics: An Exploration of Workforce Diversity. (2014, Janu-

ary 12). Retrieved October 1, 2005, from http://archives.igda.org/diversity/IGDA

DeveloperDemographics Oct05.pdf

Plant, S. (1997). Zeros + ones: digital women and technoculture. London: Fourth Estate

Ltd.

Schulte, B. (2014, March 14). The new domesticity vs. ambition. Retrieved July 22,

2013, from http://www.washingtonpost.com/blogs/she-the-people/wp/2013/07/22/

the-new-domesticity-vs-ambition/

Seitz, D. (2014, March 19). The 3ds. Retrieved January 17, 2014, from http://www.uproxx.

com/gammasquad/2014/01/3ds-sales-numbers-show-real-power-gaming-lies/

www.rogerebert.com/rogers-journal/okay-kids-play-on-my-lawn
www.rogerebert.com/rogers-journal/okay-kids-play-on-my-lawn
http://www.agilemanifesto.org
http://www.theesa.com/facts/pdfs/esa_ef_2013.pdf
http://archives.igda.org/diversity/IGDA_DeveloperDemographics_Oct05.pdf
http://archives.igda.org/diversity/IGDA_DeveloperDemographics_Oct05.pdf
http://www.washingtonpost.com/blogs/she-the-people/wp/2013/07/22/the-new-domesticity-vs-ambition/
http://www.washingtonpost.com/blogs/she-the-people/wp/2013/07/22/the-new-domesticity-vs-ambition/
http://www.uproxx.com/gammasquad/2014/01/3ds-sales-numbers-show-real-power-gaming-lies/
http://www.uproxx.com/gammasquad/2014/01/3ds-sales-numbers-show-real-power-gaming-lies/

Bibliography 61

Slaughter, A.-M. (2014, March 7). Why women still can’t have it all. Retrieved July 13,

2012, from http://www.theatlantic.com/magazine/archive/2012/07/why-women-still-cant-have-it-all/

309020/

Summerfield, P. (1984). Women workers in the second world war: Production and patri-

archy in conflict. New York:USA: Routledge.

Wolf, M. (2012). Encyclopedia of video games: the culture, technology, and art of gaming.

Santa Barbara: USA: ABC-CLIO.

http://www.theatlantic.com/magazine/archive/2012/07/why-women-still-cant-have-it-all/309020/
http://www.theatlantic.com/magazine/archive/2012/07/why-women-still-cant-have-it-all/309020/

APPENDIX

A

SCREENPERFECT INSTALLATION GUIDE

A.1 screenPerfect Code and Documentation

The code of screenPerfect is located on the DVD included in this volume, and at http:
//www.github.com/pretentiousgit/screenperfect-dev. This DVD includes five games pro-
duced for the screenPerfect Engine: PornGame, psXXYborg, OM, Grimoire, and Cyborg
Goddess.

A.2 Device List

1. Large powerbar with surge protection and power supply cable

2. Server with Node.JS installed

3. Projector or monitor

4. Portable wireless hotspot

5. Touchscreen device with browser software

6. Optional: Speakers with subwoofer

7. keyboard

8. mouse

9. power supply

10. hdmi or vga cables as appropriate

62

http://www.github.com/pretentiousgit/screenperfect-dev
http://www.github.com/pretentiousgit/screenperfect-dev

Bibliography 63

A.3 Software List

1. Google Chrome (preferred), on all devices likely to play.

2. screenPerfect will also run on Safari, but there are issues due to Google’s refusal to
support the MP4/h.264 video codec (large, but good quality) and Apple’s similar
refusal to support V8/webM (small, better, owned by Google).

3. NodeJS installed on screenPerfect’s host computer.

4. git installed on screenPerfect’s host computer.

5. Miro VideoConverter on a mac system

A.4 Installation and Site Construction

A.4.1 Before Leaving For Site

1. Ensure NodeJS is installed and functional on main server.

2. Install latest repository of screenPerfect from GitHub.

3. Ensure all video files are present and accounted for in all appropriate formats.

(a) webM

(b) MP4

4. Find surface to project on.

5. Lay out power cable and power bar.

(a) power to wireless hotspot

(b) power to main server

(c) power to projector

(d) power to support tablet interface

(e) power to speakers

(f) monitor/projector

(g) keyboard

(h) mouse

6. Connect devices to their relevant power supplies.

7. Plug in green jack of speakers to headphone jack of main server.

8. Turn on all devices.

9. Turn off all mobile data for wireless hotspot device. If necessary, remove SIM.

10. Turn on wireless hotspot.

11. Turn on your main server.

Bibliography 64

12. Connect to your wireless hotspot.

13. Open Terminal (Mac), navigate to screenPerfect’s home directory, turn on screenPer-
fect

(a) Navigate to the game folder you wish to run by typing ”cd” and then the dir-
ectory path at the prompt.

(b) type node screenPerfect, press enter.

(c) You will see a message saying “screenPerfect listening on port 3003”.

14. Open a new tab in Terminal (command-T)

15. Type ifconfig to get the IP address of your wireless hotspot.

(a) look for the value called ”inet” - it will be a 192.168.x.x address if you are
attached to the hotspot, and (probably) 10.x.x.x if you’re attached to a wider
network.

16. On the Server, Open Chrome and navigate to http://0.0.0.0:3003/client

17. Open Terminal, and in the tab where you typed “node screenPerfect” there will be
a stream of messages about a heatbeat.

18. There should also be a video playing in your browser now.

19. On the Tablet Device, open Chrome. Replace the below values with the ip address
located in step 14a

(a) http://x.x.x.x:3003/control

20. If all goes well, the “Start” button will appear onscreen on your tablet.

21. Touch the start button, and the projected video will change.

A.5 Troubleshooting

A.5.1 On Start, Google Chrome Cannot Find Control Screen

1. Check that the Tablet is on the wireless network provided by the hotspot.

2. If not, repair the hotspot by disabling it, reenabling it, and reconnecting both the
server and the tablet to the same network.

A.5.2 The Control Device is frozen, or the videos are not changing.

Just about anything else, really, including the above.

1. Open the Terminal.

2. Check the heartbeat stream for an error such as “Abort Trap,” “Bus Trap,” or “stream
error in pipe.”

192.168.x.x
10.x.x.x
http://0.0.0.0:3003/client
http://x.x.x.x:3003/control

Bibliography 65

(a) All of these are normal. They are a result of someone tapping the screen quickly
enough to overwhelm the server.

3. type node screenPerfect and press enter to restart the application.

4. Refresh the tablet browser and press the start graphic to make sure the video is being
served.

5. Refresh the server browser to ensure everything is passed correctly.

A.6 Tidbits and Tech Notes

• People with little technical experience will sometimes have trouble determining if they
have actually touched/interacted with the app appropriately. Some may accidentally
exit the application on the tablet, and may be unsure of how to re-enter the experience.

• screenPerfect is most rewarding when played in isolated concentration somewhere
quiet. It is challenging to concentrate on the video enough to get full effect if people
are distracted.

• screenPerfect crashes approximately once per three hours of play time, more in high
temperatures.

• screenPerfect games work best in Android, as Android supports the webM/V8 codec.
Apple devices require mp4s, which are approximately 4x the size.

• screenPerfect was developed in JavaScript using ExpressJS for NodeJS. screenPerfect
was developed on a MacBook Pro for use with Chrome, but will function almost as
well with Safari.

APPENDIX

B

GAME JAM DOCUMENTATION

B.1 Interview Files

Interview sound files can be found on the Supporting Materials DVD within the ”Game
Jam Interviews” folder.

B.2 Questions To Ask Game Jammers

� What were you expecting when you came to the jam?

� What features did you immediately want in your software?

� How has your group process worked throughout the week?

� How is your group process going today?

B.2.1 Games List

� Porn Game by Maxwell Lander

� Grimoire by Katie Foster and Mikayla Carson

� Kill Fuck Marry by

� Mind Safe by Dann Toliver and Robby

� Glitch95 by Arielle, Rebecca and Bronwyn

� Omm by Brittany and Diana

� Cyborg Goddess by Cara and Kate McKnyte

� Empty Puppet by Danielle Hopkins and Dawn

66

Appendix B. Game Jam Documentation 67

B.2.2 Bug Discovery

� Room Zero must be the first room edited.

� Room Order cannot be altered in a meaningful way - ID is hidden from users

� WebM video is unplayable on Apple devices

� H.264 video is slow to unplayable on non-Apple devices

B.2.3 Features Requested by Game Jammers

� Sound effects on control input - requested by Arielle

� Timed hotspots which appear and disappear on specific video cues

� A game tracer that tracks which choices players make, and records their games

� Gesture controls - pinch, zoom, throw - on touchpoints.

� Tree View to visualize how a game is laid out

� Rooms cannot be deleted - delete and reorder rooms

� Games cannot be deleted - delete and reorder games

� Copy and paste room layouts so that one does not have to recreate grids - done.

� Hotspots that can move around the room.

B.2.4 Notes from committed jammers about screenPerfect

For Arielle, the most engaged of the jammers, the idea of turning any touch device into
a custom console controller, with custom buttons, is engaging. The more traditional the
game developer, the harder a time they had with the idea that they’d be showcasing content
with the narrowest help from the new tool. The filmmakers were very impressed with the
ability to not touch a darn thing and have considerable success.

APPENDIX

C

RASPBERRY PI SETUP DOCUMENTATION

C.1 Materials and Supplies

Raspberry Pi The Raspberry Pi is a full linux computer the size of a large credit card. A
Raspi runs Debian linux off of a common SD card. 32Gb SD Card for Raspberry Pi
This is where we place the operating system and software for the Pi. USB wiFi dongle
Edimax-based wiFi USB dongle, for serving wiFi hotspot on the Pi. USB flash memory
For transferring or storing complete programs authored on external systems. Keyboard
and Mouse For initial computer setup. Ethernet Cable Standard cat5 ethernet cable
for programming remote. HDMI TV and cable Used as a monitor for the Raspberry Pi.
Micro USB and power supply Power for the pi. Mac or PC computer with USB
ports, ethernet port, SD Card reader Required for raspberry pi setup.

C.2 Background for Linux Commands

sudo means ”do this now even if I appear to have insufficient user permissions” in Linux
apt-get is an inherited ”package manager” from Debian linux. ”Dependencies” are the
software your software requires to run, Debian uses apt-get to manage them. Things that
follow sudo are commands.

C.3 Setting Up The Raspberry Pi

C.3.1 Windows 7 SD Card setup and first boot

This section is written for a Windows 7 environment, and is based on the common tutorial
at http://learn.adafruit.com/adafruit-raspberry-pi-lesson-1-preparing-and-sd-card

1. Connect your main computer to the internet.

68

http://learn.adafruit.com/adafruit-raspberry-pi-lesson-1-preparing-and-sd-card

Appendix C. Raspberry Pi Setup Documentation 69

2. Download the most recent Raspbian distribution image from http://www.raspberrypi.
org/down

3. Download Win32DiskImager from the greater internet. This is preferable because it
allows you to write image backups to your harddrive.

4. Using Win32DiskImager, write your Raspbian distro to your SD card on your main
computer.

5. Eject the microSD card and stick it into the Raspberry Pi.

6. Plug in your keyboard, and plug a mouse into your keyboard.

7. Plug in your HDMI cable and monitor. Turn them on.

8. Plug in the MicroUSB cable for power to the Raspberry Pi.

C.3.2 Configuring Raspbian

Once the RasPi is turning on, it needs to be set up to include all of its software. Turn
the Pi on, and wait until the blue configuration screen comes up. Figure 4.3: Early RasPi
Configuration Screen

1. expandrootfs Expand the boot system so that you will not run out of onboard memory
for software.

2. memorysplit Reduce the GPU to minimum, because we will be using the raspi as a
headless server from the command line.

3. changepass Change the password so that the Raspberry Pi will be less easy to hack.

4. ssh Enable SSH so that the pi will be accessible from an external computer.

When done, select finish to exit. Type sudo reboot to restart the raspi.

C.4 Software Setup for External WiFi Access

A wiFi antennae can be used for one purpose at a time: it can either be used to access
the external internet, for acquiring software to install into the raspi, or it can be used for
serving a hotspot. It cannot do both at the same time. To load the pi up requires external
access, so we will be loading that first. You must configure your wiFi before plugging in
your wiFi antenna.

In Linux, there is warning you if you mistype a folder name, say, adding an ”s” to ”network”
to make it ”networks.” If you would like to confirm your folder name is correct, try typing
”ls /etc/” to list the contents of that directory. Network is a default folder, and Interfaces
is already present at first boot, so you can make sure your things are all there before you
really get started. The way to tell you have done something wrong is if you type the below
command and an empty new file opens. You are editing a file here, not creating one. At
your console prompt, type the following:

http://www.raspberrypi.org/down
http://www.raspberrypi.org/down

Appendix C. Raspberry Pi Setup Documentation 70

1 sudo nano /etc/network/interfaces

This opens a text editor called ’nano.’ Enter the following into it.

1 auto lo

2

3 iface lo inet loopback

4 iface eth0 inet dhcp

5

6 allow -hotplug wlan0

7 auto wlan0

8

9 iface wlan0 inet dhcp

10 wpa -ssid "network name , commonly called an ssid , goes here"

11 wpa -psk "password"

Then type CTRL-X and Y to save your file.

1 sudo halt

Plug in your wifi antennae, pull the Raspberry Pi’s power cable, and plug it back in.
This should make the raspi’s antennae turn blue as it turns on. This little blue LED will
frequently be the only way to tell something is going correctly or incorrectly, so it is an
excellent tell that your machine is running.

Plug in your wifi antennae, pull the Raspberry Pi’s power cable, and plug it back in.
This should make the raspi’s antennae turn blue as it turns on. This little blue LED will
frequently be the only way to tell something is going correctly or incorrectly, so it is an
excellent tell that your machine is running.

The case in the following figures is a modification of an open-source design supplied by
Thingiverse.com user DrewTM. It is Thing #114244 and can be found at https://www.thingiverse.com/thing:114244.

Appendix C. Raspberry Pi Setup Documentation 71

Figure C.1: Raspberry Pi with functioning wiFi antenna

Figure C.2: Raspberry Pi in Thingiverse case

Appendix C. Raspberry Pi Setup Documentation 72

If all went well, you’ve now connected to your own supply of wireless internet. This will
not work if you are using an 802.1x network, such as those within OCADu. On your own
home network, however, type:

1 sudo apt -get upgrade; sudo apt -get update

This will upgrade your rasppi to whatever the latest agreed-upon package lists are, then
update those packages to their most recent approved version.

C.5 Installing Node.JS

C.5.1 Why Node?

I’ve chosen to install Node because it is the software framework I selected to run the new
game engine built in Part 1 of this thesis. Node is a new framework designed to get
Javascript running on a server. There are advantages and disadvantages to this approach.
The advantages are that JavaScript is a beautiful, minimal language that is relatively easy
to learn. The disadvantages are that there is a heavy public bias against JS due to its years
as a client-only language designed to manipulate what are known as Document Object
Model (DOM) elements in-browser.

The brilliance of Node is that it replaces the need for a specific input-output window,
replacing that definition requirement with any internet browser. Node, backed by Google’s
V8 engine, currently works best on Chrome, but it can interact with any browser.

Node is therefore easy to use, and easy to program for from the perspective of a mainly
web based development chain.

C.5.2 Installation Instructions for Node.JS

Create a directory for Node to live in by typing the following at prompt.

1 sudo mkdir /opt/node

Acquire the node ”tarball” - compressed framework files - via the internet.

1 wget http :// nodejs.org/dist/v0 .10.2/ node -v0.10.2-linux -arm -pi.tar.gz

Unzip (desticky from tarball) it:

1 tar xvzf node -v0.10.2-linux -arm -pi.tar.gz

Copy the contents of the newly unzipped folder and paste them to your new directory. This
leaves a copy of the tar and a copy of the unzipped tar at their original locations. You can
probably remove them using sudo rm when you’re sure everything is where it should be.

1 sudo cp -r node -v0.10.2-linux -arm -pi/* /opt/node

Appendix C. Raspberry Pi Setup Documentation 73

Edit - or create - a .bash profile file, which is a type of script that runs when you turn on
the pi. In this case, it runs and tells Node that it exists on your computer, so that typing
node runthisprogram will do something. What is a .bash profile?

From your root directory, to open a new nano text file:

1 sudo nano .bash_profile

Then add the following and save it to your new .bash profile file...

1 PATH=$PATH:/opt/node/bin

2 export PATH

Control-X, Y to save it.

Node lives in the /opt/node directory you created above. This adds the commands ”node”
and ”npm” to what are called ”environment variables.” If you are curious, and god knows
you must be to play with a raspi, you can type ls /opt/node/bin and see the little
programs sitting there in their bin.

C.6 Testing Node

Node will need to be able to fetch its own packages separately from the raspi from the
internet in order to run some of the monitoring software I’ve chosen to use. Particularly,
you will need the forever package.

C.6.1 Selecting Monitoring Software

forever has ultimately been the software I’ve decided on to monitor and run screenPerfect,
because it is a node-native package that keeps things running even when they crash. There
are other software packages used for broader deployment, such as Monit, which installs
to your Debian parcel rather than to Node. Monit typically runs with what is called an
HTTP Proxy, which can be written directly in Node or installed independently. In a full
deployment build, Monit and HAProxy would be preferable to Node alone, because this
follows the best practice of separating out different programming elements from one another
in production. Monit and HAProxy can also deploy applications above and beyond Node
itself, which is preferable for things written in Python, for example.

For this example, though, forever works well. It provides monitoring to tell us what
the application is doing, and automatically restarts node applications when they crash.
Were I deploying this such that it could keep an eye on the internet, which I am not, I
would also include nodemon, as is recommended by the Subnod.es project. nodemon mon-
itors your development code and pushes changes from a central server to your deployment
automatically.

That is outside the scope of this paper at present.

Appendix C. Raspberry Pi Setup Documentation 74

C.6.2 Installation of Node Modules

To install a node package - or ”module” - you type

1 npm install PACKAGENAME

To install one globally, type

1 npm install PACKAGENAME -g

To absolutely force install:

1 sudo su

2 PATH=/opt/node/bin/: $PATH

3 npm install PACKAGENAME -g

4 exit

To install forever and nodemon

1 npm install forever -g

2 npm install nodemon -g

To run forever and nodemon together....

1 forever start /usr/local/bin/nodemon /path/to/YOURAPP.js

C.6.3 Troubleshooting NPM installations

When I tried to install forever the first five times, it timed out, gave me a 404 error
repeatedly, and declared I had insufficient permissions to do a global install. This is where
computer science faith, confidence, and patience come in. When the install did not work
for half an hour, I took a break, came back, and discovered that it installed the next day.

This process is heavily dependent on a massive network of computers and other people.
In development, it is quite likely things beyond one’s own control are going to go wrong.
Going for a break will help you keep patient.

C.7 SSH via Direct Ethernet Connection
and WiFi Internet Access

Eventually, you will need both of the powered USB slots on the raspi for a USB key and for
your wiFi. In addition, the raspi doesn’t have the power to drive a monitor and consistently
serve wiFi out of its USB ports. To get around this, it is most convenient to be able to
SSH in to your device. Although it appears to be best practice to use the wpa supplicant
file to store how you wish the Raspberry Pi to connect to the internet, I have had limited
success with it, likely because I am not configuring a static IP for my raspi properly.

My /etc/network/interfaces file looks like this:

Appendix C. Raspberry Pi Setup Documentation 75

1 auto lo

2 iface lo inet loopback

3

4 auto eth0

5 iface eth0 inet static

6 address [MY MAIN TERMINAL ’S ETHERNET IP PLUS ONE]

7

8 auto wlan0

9 allow -hotplug wlan0

10 iface wlan0 inet dhcp

11 wpa -ssid "network name here"

12 wpa -psk "dubiously secure password"

1 sudo nano /etc/default/ifplugd

2

3 ### MANY TALK , HOW COMMENT , SUCH WARNING ###

4 INTERFACES ="eth0"

5 HOTPLUG_INTERFACES ="eth0"

6 ARGS="-q -f -u0 -d10 -w -I"

7

8 SUSPEND_ACTION ="stop"

This is an edit of the existing bits, and I can’t tell if it will break everything long-term.
Here is what your startup script should read. This ensures that your wiFi antenna turns
on, which is likely not something it was doing when you plugged in your ethernet directly.

1 sudo nano /etc/rc.local

2 #!/ bin/sh -e

3

4 # Print the IP address

5 _IP=$(hostname -I) || true

6 if ["$_IP"]; then

7 printf "My IP address is %s\n" "$_IP"

8 fi

9

10 # Disable the ifplugd eth0

11 sudo ifplugd eth0 --kill

12 sudo ifup wlan0

13

14 exit 0

CTRL-X and Y to save, then sudo reboot open a terminal on your main laptop. On your
laptop, at the prompt, enter:

1 ssh pi@[the static ip address you entered under eth0 static above]

Your pi@[static ip] should appear in your terminal window, which means you can now
talk to raspi. Per usual, to ensure your wifi is still working properly, try a sudo apt-get

update or ping google.com, both should return you data.

C.8 Backing Up the Raspberry Pi

Now that everything has been configured for the first steps, type sudo halt, and when the
Raspberry Pi turns off, remove the SD card from it. Place the SD card back in your main
computer and reboot Win32DiskImager.

Create a new file folder somewhere within your Documents folder. I called mine Raspberry
Pi Backups.

Appendix C. Raspberry Pi Setup Documentation 76

In the Write From section of the application, select your SD card, which is probably called
boot. In the Write To section, select your new folder.

Write a copy of the kernel image from the boot card to the new backup directory. Then
safely eject your SD Card and re-insert it in the RasPi. It is best practice to form these
occasional backups as you proceed through set up. Many of these steps can cause the
Raspberry Pi distro to break badly. A backup will save a great deal of time when the
inevitable happens.

C.9 Mount Your USB Flash Memory Stick To the Raspberry Pi

C.9.1 Configuring Your Mount Drive

This bears some thinking about, because the /media/ folder is for media, and you are
instead choosing to run a program off of the drive. Subnod.es suggests making it your www
drive, for world wide web. I picked /mnt/.

Find your USB memory by listing the the things plugged into dev:

1 sudo ls /dev/sd*

If you’ve been following along, yours is almost certainly named ”/dev/sda1”.

So make a directory for it to be addressed at:

1 sudo mkdir /mnt/USBSTICKNAME;

Then mount it to that directory

1 sudo mount -t vfat -o uid=pi ,gid=pi /dev/sda1 /mnt/USBSTICKNAME/

2 sudo reboot

Rebooting will restart the raspi but also close your SSH session. Watch the lights on the
raspi board until they’re stable again, about two minutes, then:

1 ssh pi@[static ip]

Oh look. Your USB drive does not automatically mount at boot. Problem.

C.9.2 How to Boot Mount External Memory

Find out the actual name of your external memory card:

1 ls -l /dev/disk/by -uuid

Write down the UUID of your USB stick.

This is the most manual way to run this operation, and there is software that handles
automatic drive mounting. It is called usbmount and was discarded during this process
because it ended up being more convenient to rely on my Node application being loaded
directly onto the SD card, rather than from boot.

Appendix C. Raspberry Pi Setup Documentation 77

1 sudo chmod 775 /mnt/USBSTICKNAME

2 sudo sp /etc/fstab /etc/fstab.bak

3 sudo nano /etc/fstab

Add the following to /etct/fstab

1 UUID=YOURUUID /mnt/USBSTICKNAME vfat rw,defaults 0 0

CTRL-X, Y to save, then

1 sudo reboot

2 ls /mnt/USBSTICKNAME

This command should display the contents of your USB key when you go looking for it.

At this point, I have taken a copy of my Node application and moved it to the SD card
in a separate directory. Although I have optimistically tried to make this a headless - no
keyboard or monitor - box, realistically, lots can go wrong with the SSHing process. You
will probably eventually want a keyboard, and it is much easier to store your access point
as a single image per card, much like any other video game.

To store your games locally, rather than in the USB stick:

1 sudo cp -r /mnt/USBSTICKNAME /home/pi/YOURDIRECTORYNAME

C.10 Set Up a wiFi Hotspot

To get started, you will need some more software.

1 sudo apt -get install hostapd dnsmasq

When everything is done installing, you will be converting your /etc/network/interfaces
file to serve a hotspot, rather than connect to the internet.

Here is what my final /etc/network/interfaces file looks like:

1 auto lo

2 iface lo inet loopback

3

4 auto eth0

5 iface eth0 inet static

6 address 169.254.222. xx #xx is a stand -in for an actual address , not included.

7

8 allow hotplug wlan0

9

10 ## wlan internet connect settings are commented out for easy swap.

11 #auto wlan0

12 #iface wlan0 inet dhcp

13 # wpa -ssid "network name"

14 # wpa -psk "network password"

15

16 iface wlan0 inet static

17 address 192.168.42.1 #42 is a joke about Douglas Adams , in honour of my thesis

advisor.

18 netmask 255.255.255.0

Appendix C. Raspberry Pi Setup Documentation 78

C.11 Configuring HostAPD

hostapd is the software that provides the access point using the Raspberry Pi. It can be
tricky, and in order to make it work, it needs to be compiled for one’s specific model of wiFi
antennae. For the purposes of this paper, we are using an antenna sold and supported by
Adafruit. The appropriate compile of the hostapd software is included in the supplementary
files to this paper, but can also be found at http://www.adafruit.com/downloads/adafruit
hostapd.zip.

To install a valid copy of hostapd:

1 wget http :// www.adafruit.com/downloads/adafruit_hostapd.zip

2 unzip adafruit_hostapd.zip

3 sudo mv /usr/sbin/hostapd /usr/sbin/hostapd.ORIG

4 sudo mv hostapd /usr/sbin

5 sudo chmod 755 /usr/sbin/hostapd

Now set up a daemon - a piece of automatic system software - to run the hostapd config-
uration file on boot.

1 sudo nano /etc/default/hostapd

Uncomment (remove the hash mark in front of) #DAEMON_CONF="" and replace that line
with DAEMON_CONF="/etc/hostapd/hostapd.conf. Then type CTRL-X and Y to save
your file.

My hostapd file is listed below.

1 sudo nano /etc/hostapd/hostapd.conf

2

3 interface=wlan0

4 driver=rtl871xdrv

5 ssid=piebox

6 hw_mode=g

7 channel =6

8 macaddr_acl =0

9 auth_algs =1

10 ignore_broadcast_ssid =0

11 wpa=2

12 wpa_passphrase=berrybox

13 wpa_key_mgmt=WPA -PSK

14 wpa_pairwise=TKIP

15 rsn_pairwise=CCMP

C.12 Configuring DNS access via dnsmasq

Configuring dnsmasq is straightforward. The installation package comes with an extensive
config file, which lives at /etc/dnsmasq.conf, and includes all of the options necessary to
turn on a DNS routing service.

To configure your dnsmasq installation, enter sudo nano /etc/dnsmasq.conf and then
add the following lines to the top of the configuration file. The configuration file contains
all these values commented out already, and may be worth a separate read.

1 interface=wlan0

2 dhcp -range =192.168.42.2 , 192.168.42.50 ,255.255.255.0 ,12h

3 address =/#/192.168.42.1 #redirect all DNS requests to 192.168.42.1

http://www.adafruit.com/downloads/adafruit_hostapd.zip
http://www.adafruit.com/downloads/adafruit_hostapd.zip

Appendix C. Raspberry Pi Setup Documentation 79

4 server =/ screenperfect /192.168.42.1#3003

5 address =/ apple.com /0.0.0.0

What the above does is tell the raspi to listen on the wlan0 interface, to the dhcp range
between 192.168.42.2 and 42.50, for twelve hours per time a client connects to the wiFi point.
In addition, the portal is supposed to redirect all DNS requests - things like ”google.com” -
to the Pi’s main address, which is - as we can see in/etc/network/interfaces - 192.168.42.1,
and from there to the port 3003, on which my particular Node application listens.

In addition, the portal serves a spoof address to apple.com, which helps us to pop up the
appropriate page on the captive portal when it is turned on.

To date, this portion has not proven totally effective. Getting a page to pop up on a captive
portal requires a series of correct internet handshakes per device, so it has so far been easier
to set the URL by hand on client devices to the Raspi.

APPENDIX

D

APPENDIX D: MIT LICENCE AND RESEARCH ETHICS
APPROVAL

D.1 MIT Licence

screenPerfect

The MIT License (MIT)

Copyright (c) 2013 Alex Leitch

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the ”Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Daimio

The MIT License (MIT)

Copyright (c) 2013 Bento Box Projects, Inc.

80

Appendix D. MIT Licence and Research Ethics Approval 81

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the ”Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Appendix D. MIT Licence and Research Ethics Approval 82

Research Ethics Board

OCAD U Research Ethics Board: rm 7520c, 205 Richmond Street W, Toronto, ON M5V 1V3
 416.977.6000 x474

November 5, 2013

Dear Emma Westecott,

1. RE: OCADU 143 “ScreenPerfect: an HTML5 video management project.”

The OCAD University Research Ethics Board has reviewed the above-named
submission. The protocol and consent form dated November 5, 2013 are approved for use
for the next 12 months. If the study is expected to continue beyond the expiry date
(November 4, 2014) you are responsible for ensuring the study receives re-approval.
Your final approval number is 2013-42. Please note that this approval also covers the
work of Graduate Student Alex Leitch.

Before proceeding with your project, compliance with other required University
approvals/certifications, institutional requirements, or governmental authorizations may
be required. It is your responsibility to ensure that the ethical guidelines and approvals of
those facilities or institutions are obtained and filed with the OCAD U REB prior to the
initiation of any research.

If, during the course of the research, there are any serious adverse events, changes in the
approved protocol or consent form or any new information that must be considered with
respect to the study, these should be brought to the immediate attention of the Board.

The REB must also be notified of the completion or termination of this study and a final
report provided. The template is attached.

Best wishes for the successful completion of your project.

Yours sincerely,

Tony Kerr, Chair, OCAD U Research Ethics Board

	List of Figures
	1 Introduction: A Better Interactive Design Method
	1.1 Designing Software to Power Experience
	1.2 Interaction and Presentation in Game Design
	1.3 Initial Approach
	1.3.1 Artist-Led Collaboration with Hannah Epstein and game::play Lab
	1.3.2 Vera Frenkel, String Games, and Feminist Video Art
	1.3.3 Software Development

	1.4 Community Based Prototype Design with Dames Making Games and Bento Box-Miso: Overcoming Imposter Syndrome
	1.5 Prototype Development: Hardware Installation and Display

	2 Artist-Led Technical Collaboration
	2.1 Design Research: Artist Collaboration
	2.2 Software Development Methods: Agile
	2.2.1 Full Motion Video Games and Mobile Interactive Screens

	2.3 Game Engines
	2.3.1 Twine
	2.3.2 Multiscreen Video Technology
	2.3.3 Licensing
	2.3.4 Science Fiction Inputs

	2.4 Code as Context-Sensitive Writing
	2.5 Software Design
	2.5.1 screenPerfect Engine|Interface Layout

	3 Industry Engagement and Community Based Research
	3.1 Theory and Politics
	3.2 Cixous, Embodiment, and the Game Jam
	3.3 Industry Engagement
	3.3.1 Game Jams, A Design Method
	3.3.2 Dames Making Games and Game Jams
	3.3.3 Bento Box-Miso
	3.3.4 No Jam 2: Video Video

	4 Prototype Development for Display Hardware
	4.1 Client Server Model
	4.2 Public Installations
	4.3 Hardware Design
	4.4 Technical Display Concerns and the Public Private Internet
	4.4.1 Subnod.es and Public Private Space

	4.5 Distribution of Work

	5 Conclusion
	5.1 Conclusion
	5.1.1 Reflection
	5.1.2 Next Steps

	A screenPerfect Installation Guide
	A.1 screenPerfect Code and Documentation
	A.2 Device List
	A.3 Software List
	A.4 Installation and Site Construction
	A.4.1 Before Leaving For Site

	A.5 Troubleshooting
	A.5.1 On Start, Google Chrome Cannot Find Control Screen
	A.5.2 The Control Device is frozen, or the videos are not changing.

	A.6 Tidbits and Tech Notes

	B Game Jam Documentation
	B.1 Interview Files
	B.2 Questions To Ask Game Jammers
	B.2.1 Games List
	B.2.2 Bug Discovery
	B.2.3 Features Requested by Game Jammers
	B.2.4 Notes from committed jammers about screenPerfect

	C Raspberry Pi Setup Documentation
	C.1 Materials and Supplies
	C.2 Background for Linux Commands
	C.3 Setting Up The Raspberry Pi
	C.3.1 Windows 7 SD Card setup and first boot
	C.3.2 Configuring Raspbian

	C.4 Software Setup for External WiFi Access
	C.5 Installing Node.JS
	C.5.1 Why Node?
	C.5.2 Installation Instructions for Node.JS

	C.6 Testing Node
	C.6.1 Selecting Monitoring Software
	C.6.2 Installation of Node Modules
	C.6.3 Troubleshooting NPM installations

	C.7 SSH via Direct Ethernet Connection and WiFi Internet Access
	C.8 Backing Up the Raspberry Pi
	C.9 Mount Your USB Flash Memory Stick To the Raspberry Pi
	C.9.1 Configuring Your Mount Drive
	C.9.2 How to Boot Mount External Memory

	C.10 Set Up a wiFi Hotspot
	C.11 Configuring HostAPD
	C.12 Configuring DNS access via dnsmasq

	D Appendix D: MIT Licence and Research Ethics Approval
	D.1 MIT Licence

