
Designing an Accessible Web Technology

by

Jacob Mouka

Submitted to OCAD University

in partial fulfillment of the requirements for the degree of

Master of Design

in

Inclusive Design

Toronto, Ontario, Canada, August 2013

 Jacob Mouka, 2013

This work is licensed under a Creative Commons 2.5 Canada license. To see the license,

go to http://creativecommons.org/licenses/by/2.5/ca/ or write to Creative Commons, 171

Second Street, Suite 300, San Francisco, California 94105, USA.

 ii

Copyright Notice

This document is licensed under the Creative Commons 2.5 Canada License.

http://creativecommons.org/licenses/by/2.5/ca/

You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

• to make commercial use of the work

Under the following conditions:

• Attribution — You must give the original author credit.

With the understanding that:

• Waiver — Any of the above conditions can be waived if you get permission from

the copyright holder.

• Public Domain — Where the work or any of its elements is in the public domain

under applicable law, that status is in no way affected by the licence.

• Other Rights — In no way are any of the following rights affected by the licence:

o Your fair dealing or fair use rights, or other applicable copyright

exceptions and limitations;

o The author’s moral rights;

o Rights other persons may have either in the work itself or in how the work

is used, such as publicity or privacy rights.

• Notice — For any reuse or distribution, you must make clear to others the licence

terms of this work.

 iii

Author’s Declaration

I hereby declare that I am the sole author of this MRP. This is a true copy of the MRP,

including any required final revisions, as accepted by my examiners.

I authorize OCAD University to lend this MRP to other institutions or individuals for the

purpose of scholarly research.

I understand that my MRP may be made electronically available to the public.

I further authorize OCAD University to reproduce this MRP by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

Signature __

 iv

Acknowledgements

I would like to thank Colin Clark (Inclusive Design Research Centre, OCAD University),

Richard Schwerdtfeger (IBM), Jutta Treviranus (Director, Inclusive Design Research

Centre, OCAD University), and Peter Coppin (OCAD University) for their time and

invaluable guidance.

 v

Abstract

This project considered the limitations of accessibility in web technology and

screen readers. It was an attempt to create a framework for building web pages and

applications that would have accessibility built in and make development easier. It also

involved building a prototype screen navigator that demonstrated ways of overcoming the

shortcomings of current screen readers. The final demonstration was an email web client

built using this framework. The purpose of the email web application was to explore the

viability, benefits and limitations of the framework’s method of creating web

applications, and to test the usefulness of the prototype screen navigator. The findings for

the framework were that it has benefits, for both the users of assistive technologies and

developers, but there remain gaps, ideas and questions for further exploration. The

prototype navigator made interacting with the dynamic application fairly easy and

efficient.

 vi

Table of Contents

Copyright Notice... ii

Author’s Declaration.. iii

Acknowledgements...iv

Abstract ..v

Introduction..1

The MVC Framework..3

Prototype Screen Navigator ...8

Email Web Application..12

Results..16

Discussion ..19

Future Directions ...23

Conclusion ...23

References..26

 vii

List of Tables

Table 1. Navigation scheme for the prototype screen navigator.10

Table 2. Example of steps performed to browse the list of emails in the prototype screen

navigator. ...19

List of Figures

Figure 1. Sample template used by the framework to define the structure of widgets and

page elements. The syntax allows developers to re-arrange, insert and update page

elements, and inject additional functionality. ..6

Figure 2. Sample code of the framework’s registry. It monitors the DOM for updates

matching the CSS selector (first parameter) and executes the passed-in functions. In

this sample, when a folder node is created or deleted, it triggers initFolderList and

removeFolder, respectively. Similarly, it will execute richAppLogin when any

[role=“main”] item is shown..8

Figure 3. Screenshot of the plain (base) page of the email client (a-Mail, for Accessible

Mail)...14

Figure 4. Screenshot of the plain page with the screen navigator. The from field is

selected and described in the screen navigator’s panel (right)...................................15

Figure 5. Screenshot of the email client with a graphical user interface...........................16

Introduction

Most of the work in web accessibility focuses on bridging the gaps, but the current

strategy of adapting web pages to assistive technologies (AT) has limitations: it is

reactive, it is an extra (and often left out) step in the development process, and the results

tend to be a compromise. This project explores whether it is possible to design a web

technology that is inherently accessible, makes it easier for developers to create complex

web pages, and has the ability to customize the user interface for different users’ needs.

The project attempts to achieve built-in accessibility by creating a semantic, simple data

layer that AT can interact with, as the base for the architecture. The architecture is also a

framework for adding graphical user interfaces (UI) to this semantic layer. The exposed

semantic layer would be an interface that all kinds of devices and AT could interact with

to optimize the experience for their users. In other words, the semantic layer would be a

base for building graphical applications, as well as an intermediate interface for AT. In

this context, AT is anything that customizes the experience for the user beyond the

developer’s original intent (e.g., providing alternate interactions for eye-tracking systems,

or emphasizing primary content by changing colour or contrast). Using such an

architecture could make building accessible applications transparent to developers

because they would not have to do extra work to achieve accessibility.

 2

The main principle of this project is to build web applications in a way that explicitly

separates content (and its interactions) from the UI and code that drives it. This is based

on the software engineering pattern Model-View-Controller (MVC). The goal of this

architecture is to divide web pages into an essential base layer and an extended layer (e.g.,

graphical UI). The essential layer of an application is its data, its core functionality and

the minimum HTML needed to present and interact with that data. It should be thought of

as the base application that can be extended with various UIs. The goals are to give

developers more flexibility and make it easier to build complex web pages, and to allow

AT to interact directly with a simpler but complete essential layer, and have the flexibility

to modify the UI.

One technology that is similar to this MVC framework is XSL (“The Extensible

Stylesheet Language Family (XSL),” n.d.). XSL includes a language (XSLT) to transform

XML documents into other documents such as HTML or plain text. Its goals are similar

to this project in that it separates content from presentation and provides flexibility for

creating multiple representations. There are several differences between these projects.

The aim of this project is to make it simple for non-developers to use, while XSLT is a

fairly complex programming language. Another difference is that XSLT generates new

documents from XML documents, while this MVC framework is intended to be used for

modifying dynamic web pages in real time.

 3

This project has three major parts. The first part was creating a framework for building

web pages that allows for this style of MVC architecture. The second part was looking at

major limitations of current screen readers, and building a prototype screen navigator that

demonstrates how assistive technology can benefit from web pages created using the

framework. The screen navigator demonstrates effective ways for non-visual interaction

with a dynamic web page. The final part was building an email web application using this

framework to test the usefulness of the prototype screen navigator and explore the ease of

development and the benefits and limitations of building applications using this method.

The work of this project is an exploration of different possible architectures for the web

platform. The strategy was to imagine an ideal situation and work backwards to try to

implement it. Some of the findings show value, while others demonstrate gaps and point

to new ideas and future work.

The MVC Framework

The concept for the framework was based in part on Cascading Style Sheets (CSS), which

allow developers to create the style of a web page separately from the page itself. This

increases flexibility and improves accessibility by limiting how much unnecessary

information the assistive technology needs to process. But CSS is limited when it comes

to visually laying out a web page. Achieving a specific visual layout requires the

document to be structured in a certain way, which excludes other visual layouts. It also

 4

cannot extend the functionality of the web page. This framework attempts to build a

similar system to CSS, but one that allows templates to be loaded to reorganize the web

page and allows developers to inject functionality to drive the UI. An important goal is to

place as few restrictions on the base page as possible (ideally none), so that any page can

be developed independently of this framework.

This framework uses a similar approach to that of the Mercator system created by

(Mynatt, 1992). Their approach was to build a method of monitoring graphical

applications built for the X Windows System (used to build graphical applications for

various Linux and Unix systems). The system’s widgets have an analogous off-screen

model that focuses on structure and semantics. The mapping of the widget hierarchy to

the off-screen counterpart is similar, but not one-to-one. The widget hierarchy includes

many elements that are too low-level to be useful to the off-screen model. The goal was

to simplify the structure and provide more semantics for the screen reader. Users could

navigate the graphical UI by following the semantic structure of the off-screen model.

This allows them to build a mental model of the application and navigate more intuitively

and efficiently.

The Mercator system translated an application’s graphical components (e.g., windows,

buttons and text boxes) into the semantic off-screen model by monitoring the running

application (via the client-server communication and Editres protocol of X Windows) to

determine its graphical hierarchy and the user’s interactions (Mynatt & Edwards, 1992).

 5

This formed a general solution for translating any application built using the X Windows

toolkit to a screen reader. Thus, implementing screen reader accessibility was transparent

to the application’s developers.

One advantage that this MVC framework has over the Mercator system is full access to

the DOM (document object model). X Windows limited the amount of information (about

both the application’s structure and the user’s interaction) available to Mercator. The

Mercator system also could not access any elements built using methods other than the X

Windows toolkit (e.g., custom drawing routines). The framework’s unrestricted access to

a web page’s DOM expands its potential.

The MVC framework in this project has three main components. The first includes the

syntax and rendering engine for transforming the web page. The second is a system for

reacting to dynamic updates of the web page. The final component is a system extending

the functionality of the web page. The framework was built using JavaScript and the

jQuery library.

The rendering system uses a combination of plain HTML and custom tags for templates

that define the structure of widgets and page elements (see Figure 1 for a sample). These

templates are similar to CSS rules but define the structure of HTML nodes instead of

style. The templates are loaded from external files, and in this way the visual layout of a

page can be changed at any time, exactly like CSS; however, unlike CSS, the system also

 6

has the ability to wrap, re-arrange and modify HTML nodes of the base page, as well as

insert new nodes. Therefore, the web page can be re-organized considerably. The syntax

was designed to be easy to learn for anyone familiar with HTML. The framework was

built with existing application frameworks and development practices in mind. For

example, extra care was taken not to break references to HTML nodes that might be

managed by other frameworks. In this way, this framework can be used to extend

capabilities of existing application frameworks.

<layout for="#widget">
 <div id="widgetWrapper">
 <node selector=".name"></node>
 <div class="widgetBody">
 <node selector="img" onclick="clickItem(this)"></node>
 <node selector=".delete"

onbefore="confirmDelete"
onafter="animateDelete"></node>

 <node selector=".view" onafterajax="animateMainArea"></node>
 </div>
 </div>
 <edit selector="a" class="widgetLink"></edit>
</layout>

Figure 1. Sample template used by the framework to define the structure of widgets and page
elements. The syntax allows developers to re-arrange, insert and update page elements, and inject
additional functionality.

The framework uses a system of observing the DOM for dynamic updates and triggering

actions as needed. This is similar to the way CSS rules are applied to dynamically

updated nodes. The framework uses the DOM4 Mutation Observer interface (Anne van

Kesteren, Aryeh Gregor, Lachlan Hunt, & Ms2ger, 2012) to receive notifications when

nodes are created or deleted. When a node that matches a template is created, it needs to

be updated by the rendering engine. When a node with a template is deleted, additional

 7

cleanup is performed. The developers of the base document do not need to do anything

extra to allow templates to be loaded later, and the templates are automatically applied in

response to dynamic updates.

The final component of the framework is a system for extending the functionality of the

base page. The goal is to inject code that drives and animates the UI added by the

templates. The base page is responsible for content and its code, and the templates are

responsible for the UI and its code. The framework is the piece that controls the two

sides, in a true MVC architecture.

It has two main methods of injecting additional functionality. The first uses the jQuery

event system (“Event Handler Attachment | jQuery API Documentation,” n.d.). The

template syntax allows for triggering code before and after the code already associated

with an element. Additional UI updates can be performed when a user interacts with some

page element. It is also possible to inject code before and after an asynchronous (AJAX)

action.

The second method is a registry that allows the template code to receive notifications for

specific DOM updates. It can be difficult to determine what specific nodes were updated

by an action in the base code, and this registry enables the template’s code to react to

those updates. For example, if the base code has some background task (e.g., AJAX) that

updates the DOM, the template’s code can register to be notified of those updates (e.g.,

 8

when a node is created or deleted), and react accordingly. Please refer to Figure 2 for

sample code.

mvcController.registerInsertAndDeleteCallback('folder',
initFolderList, removeFolder);

mvcController.registerOnShow('[role=main]', richAppLogin);

Figure 2. Sample code of the framework’s registry. It monitors the DOM for updates matching the
CSS selector (first parameter) and executes the passed-in functions. In this sample, when a folder
node is created or deleted, it triggers initFolderList and removeFolder, respectively. Similarly, it will
execute richAppLogin when any [role=“main”] item is shown.

Prototype Screen Navigator

This project looked at three major gaps in current screen readers. The first is that it is

difficult for users to create a mental model of the web page. The main strategy people use

is to look at headings, and to a lesser extent labels, skip links and descriptive anchors

(Bigham, Cavender, Brudvik, Wobbrock, & Lander, 2007). These elements have been

found to significantly improve navigation, but they only give an approximation of the

web page’s structure, and only when used properly. The second gap is that it is difficult to

skim and skip content. Skipping content meaningfully is related to the difficulty of

building an accurate mental model of the page, as well as the facility to navigate the page.

It has been found that headings give rough landmarks, but generally users of screen

readers use a scanning technique, jumping ahead and back, trying to zero in on content

(Takagi, Saito, Fukuda, & Asakawa, 2007). Finally, it is difficult for users to interact with

dynamic web pages (Bigham et al., 2007)(Brown, Jay, Chen, & Harper, 2012). The W3C

 9

Web Accessibility Initiative - Accessible Rich Internet Applications (WAI-ARIA)

specification significantly improves screen reader interaction with dynamic content, but

many developers do not use it properly or do not use it at all (“WebAIM: Screen Reader

User Survey #4,” 2012). It also requires special attention to be correctly implemented

(Scheuhammer, Cooper, Pappas, & Schwerdtfeger, 2013), and it can be difficult to

engineer effective user interfaces for AT (Brown & Harper, 2013).

The prototype screen navigator built in this project demonstrates how an AT can interact

directly with a web page’s DOM to overcome these gaps. It uses a similar strategy to that

of the Mercator system (Mynatt, 1992); it interacts with the structure and semantics of the

content, rather than the graphical UI. While the Mercator system had limited access to the

DOM (due to limitations of X Windows), this prototype has full access to the DOM. The

framework allows the screen navigator to ignore loading of the UI layer and interact with

a very simple but functionally complete version of the web page.

To enable the user to create an accurate mental model of the web page, the screen

navigator navigates by following the structure of the content (DOM hierarchy). As the

user navigates the page (see Table 1 for the navigation scheme), they build an accurate

mental model of the content’s structure. This hierarchical navigation makes it possible to

skip content meaningfully and skim the page effectively and efficiently (Treviranus, n.d.).

It also makes it fairly easy for a user to keep track of where they are on the page. Future

 10

work could focus on different ways of giving the user more context, such as reading out

the full path from the root node to the current selection.

The screen navigator attempts to meaningfully describe the current selection using a

variety of methods. It first describes the node itself. If the node has a WAI-ARIA role, the

screen navigator uses that; otherwise, it states the kind of tag in plain language (e.g.,

“link” for <A>). If the node contains a sub-hierarchy, the screen navigator mentions the

number of child nodes. Finally, it peeks into the hierarchy to find the first element with

visible content and reads it out. There are other ways to describe the node, and future

versions could offer customization.

Navigation Keys Function
up and down arrow keys move the selection to the previous and next items,

respectively, in the current sub-hierarchy (i.e., sibling
nodes)

right arrow key drill into the sub-hierarchy of the current selection
left arrow key navigate back up the hierarchy
? describe the current selection
page up and page down keys attempt to find the previous and next similar elements,

respectively, in a list of repeated items (e.g., the “to”
field in a list of emails)

enter key activate the current selection (equivalent to the left
mouse button), or interact with a text input element

Table 1. Navigation scheme for the prototype screen navigator.

As an aside, this project used XML to describe the structure of the page’s data. For

example, for emails it used an <EMAIL> tag, with <SUBJECT>, <FROM>, etc., tags for

the email’s data. This way, the screen navigator can accurately describe the data structure

 11

(e.g., “from: john@website.com”). There are several reasons for and against using XML,

and varying opinions on how it could be used in web pages, and this is a discussion that

should be continued. For example, should developers be allowed to create arbitrary XML

structures for their data? How can we maintain semantics and interoperability, and also

ensure flexibility and ease of use? For the purpose of this project, XML was a simple,

effective way of defining data structures and enabling the screen reader to accurately

describe them.

The screen reader uses the MVC framework’s DOM observer facility to respond to

dynamic page updates. When page elements are created or made visible, the screen reader

is notified by the framework and announces that a node has been changed (e.g.,

“Notification for item just shown: email”). The user can open a notifications menu and

browse the list of notifications. They are marked (and announced) as new until the user

has selected them, and they are ordered newest to oldest. Selecting a notification makes

the user’s selection jump to the updated node, where they resume navigation. They can

jump back to the selection previous to the selected notification item. Thus, the screen

reader has a second mode of navigation based on the history of selection jumps. For

example, in the email web application, the user can click the “reply” link on an email,

which causes the email composer form to appear. They can select the form from the

notification menu, fill it out, press the “send” link, and use the jump history to return to

the email they just replied to. Page elements that are removed or hidden do not require

notification unless they are the user’s current selection. In those cases, the screen reader

 12

announces that their selection has been removed (or hidden) and selects the nearest parent

node, to allow the user to keep their page orientation.

This system is an effective way to interact with a dynamic web page. Furthermore, it does

not require any special work by the developer. By interacting directly with the DOM, the

screen reader has an accurate account of the events on the page. Future work could focus

on notification style, customization of alerts (e.g., ignoring certain elements), etc.

The screen reader has a text entry mode for interacting with input elements. When such

an element is selected, pressing enter changes modes from navigation to text entry, and

the keyboard reverts to the default behaviour. Pressing escape returns the user to

navigation mode. The intention was to separate the activities (navigation and text entry)

to avoid interference.

Email Web Application

The third part of this project was creating a working web application using this

framework. The purpose was to test the usefulness of the screen reader and explore the

viability, ease of development, and benefits and limitations of developing applications

using the framework. An email web client was chosen because it is a familiar application,

it has enough dynamic interactivity to be a fairly representative interactive web page, and

a basic working example was relatively simple to implement.

 13

The plain page (Figure 3) contained the application’s essential functionality and had only

basic styling using CSS. This is the essential base layer, focusing on content and its

interactions. The screen reader was then loaded and used to test interacting with the

application (Figure 4). Finally, the framework was used to create the interactive graphical

UI for the application by loading templates and code (Figure 5). The templates changed

the application’s UI considerably and used many of the framework’s features. Some

examples are:

• the page structure is re-arranged considerably, to include a header, sidebar, main

area, etc.

• email navigation is re-organized into folders, with buttons for selecting folders,

the sidebar for listing emails in the folders, and the main area for displaying the

selected email

• extra functionality is injected to animate certain actions; for example, deleting an

email animates the action in the sidebar (the email shrinks, then disappears) and

hides the main area

• the template’s code uses the framework’s DOM observer to update the folder

buttons when the base code creates or deletes folders

 14

Figure 3. Screenshot of the plain (base) page of the email client (a-Mail, for Accessible Mail).

 15

Figure 4. Screenshot of the plain page with the screen navigator. The from field is selected and
described in the screen navigator’s panel (right).

 16

Figure 5. Screenshot of the email client with a graphical user interface.

Results

The MVC framework worked well in loading a rich, interactive graphical UI onto the

plain email client. The rendering engine was capable of creating the graphical UI, and the

system of extending functionality (both injecting functionality onto page items, including

 17

AJAX requests, and using the DOM observer) proved sufficient to create the rich,

interactive application. From building the email client, it was found very valuable to split

the development into phases focusing on the content and the presentation. The flexibility

afforded by being able to add templates without having to change the base page was also

valuable. The template syntax was easy to use and afforded a lot of flexibility in UI

development. The framework has the potential to save developers a considerable amount

of work. In the email client, 53% of the total HTML was for the graphical UI (content

was 52 lines of HTML, and UI templates were 58 lines of HTML). Reusing such

templates on a multi-page website would mean significant savings. Many of these results

are qualitative and are the author’s reflections. The method was to compare developing

web pages using this framework to using plain HTML, CSS and JavaScript.

The results for the prototype screen navigator were very positive. Navigating the web

page’s logical DOM structure was found to be efficient, and it was easy to track one’s

location. It was particularly valuable knowing explicitly what the selected item was (e.g.,

the subject node in an email) and preventing the cursor from unintentionally navigating to

other sections. It was also easy to skip content and find specific items. The notification

system for dynamic updates worked well, and it was easy to react to alerts, e.g., to read a

new email or reply to an email. Particularly, it was useful to be able to jump directly to

the notification’s associated node, interact with it and use the jump history to jump back.

These results are the author’s reflections and are qualitative comparisons to existing

screen reader technology. For example, using Google’s Gmail web application with

 18

VoiceOver on Mac OS X 10.8, it was difficult to build a mental model of the web page

and the structure of the page elements, even with the use of WAI-ARIA landmarks. It was

also difficult to keep track of the current selection, and it was difficult to stay in the

desired section. Dynamic updates were not obvious and their nature was not clear (e.g.,

updating the email list after choosing a folder). A lot of time was spent navigating over

content to find the desired item (e.g., browsing the list of emails).

For example, browsing the email list of the email client using the screen navigator was

compared to using VoiceOver with Google’s Gmail. For Gmail, it was easy to use the

WAI-ARIA landmark to find the emails section, but browsing the email list required

serial navigation over all elements, many of them UI elements such as checkboxes and

images whose function was not clear. It was not clear what email element (e.g., subject,

date) was selected, since VoiceOver simply read the text on the screen. It was not clear

where one email ended and another began, and the content’s structure had to be

extrapolated (e.g., each email starts with a checkbox item). There was no easy way to

skim the email list. In comparison, Table 2 shows an example of navigating the email list

with the screen navigator. The key points were: the content’s organization was explicit,

which made it easy to move between sections; an email’s elements (e.g., subject, date)

were explicitly described; it was clear where an email started and ended; and it was easy

to skim the list.

 19

User’s Action Example of Screen Navigator Output
Select main section (third item on page,
i.e., press down arrow twice to find it, and
right arrow to select)

“main section”

Select a folder, e.g., inbox (press down
arrow to find the folder, and press right
arrow to select)

“folder: 2 items. First: INBOX”

Select the folder’s emails (press down
arrow to find emails section, and right
arrow to select)

“emails, 5 items”

Select an email list (press up arrow or
down arrow to browse the list, and right
arrow to select an email)

“email, 8 items: First: jmouka@gmail.com”

Browse an email (press up arrow and down
arrow to select the email’s elements)

“subject: Re: hi there!”

Return to the emails list (press left arrow) “email, 8 items. First: jmouka@gmail.com”
Use up arrow and down arrow to select the
previous or next email, respectively

Table 2. Example of steps performed to browse the list of emails in the prototype screen navigator.

Discussion

The goal of the framework was to place minimal restrictions on the base page and code.

This was not completely possible. The main restriction on the base code is that it could

not assume a specific hierarchy. For example, when an email’s delete link was pressed,

that link could not assume its direct parent was the main email container. Instead, the

nodes must perform a hierarchy search up the parent chain to find the desired nodes. This

should not present a major hurdle, but it was a required programming pattern. The query

also added a performance penalty, but in practice the hierarchies were found to be small

(three or fewer nodes long), and there is no branching when moving up in the hierarchy,

 20

so this penalty is small. These queries were also fairly infrequent, since they are the

results of a user’s actions. On the other hand, there are no such limitations for application

frameworks that maintain direct references to nodes, as is a common architecture.

Similarly, the templates loaded cannot remove any nodes expected by the base code or re-

arrange the structure in a way that would break the base code. This is a small limitation

since the architecture is such that the templates are allowed to depend on the base page. In

practice, this was not a limitation, as the logical structure of the base page generally

followed a similar structure in the templates, typically only adding, re-ordering or hiding

nodes. This is a matter of best practices.

Two development patterns and questions about structure were noted in developing the

email web application. The first pattern is that it is difficult for the template code to

directly determine which nodes were changed by the base code. Chaining functionality

was ineffective in this since the base code does not return references to the DOM updates.

The pattern was to register with the framework’s DOM observer to be notified of specific

updates (e.g., when a new email node is created) and trigger additional functionality.

The second pattern was a strategy of searching for appropriate points in the base page’s

workflow to inject additional functionality. For example, to delete an email in the

graphical application, does it make sense to create a separate delete button in the main

view area, which executes code specific to the rich version and then triggers the base

page’s delete link? Or is it better to inject functionality into the base page’s delete link

 21

and have the user click it directly? In general, the template code does not interact directly

with the base code, and instead the developer looks for the best places to inject additional

functionality.

Finally, it was not always clear how best to structure the content to be logically

organized, or even what elements should be part of the base page. The base page contains

a login form and an email composer form, and it was not obvious where those forms

should be on the page. For example, in an early version of the email client, the email

composer form was dynamically inserted below the reply link when that was pressed.

This made sense in the page’s workflow, but the resulting page structure was not logically

organized. This could be confusing to people using the screen navigator and it could be

too limiting for developers to work with. Instead, it was better to make these forms

siblings to the other main sections (navigation and main area) and show/hide them as

needed.

The focus of this project was presenting an architecture for building rich, interactive web

applications that allow assistive technology to interact with a simpler, essential layer of

the web page. In this narrow view, it was successful. However, it was found difficult to

generalize this method to other assistive technology, such as keyboard-only navigation of

the graphical user interface. The problem seems to stem from the fact that HTML is

ultimately a mixture of content and presentation elements. One strategy that was

attempted was to mark the base page’s elements as content and make use of this

 22

information, but this was undone whenever page elements were created dynamically and

not updated by the framework. For example, in the email application, the main email

viewer area was generated by the template code, so the framework would mark it as

presentation, but a person using keyboard-only navigation would not be able to reach this

area when following content-only nodes.

The prototype screen navigator showed that interacting with the content, rather than a

complex graphical UI, was an effective way of interacting with a dynamic web page. The

content’s structure and semantics made building a mental model of the page fairly easy,

which enabled skimming and efficient navigation. The prototype’s method of observing

the DOM allowed it to react to dynamic updates directly, without special considerations

from the developer. Similar research is being done by others (Brown & Harper, 2013).

The next step would be to perform user testing, to test these claims further.

The screen navigator was a simple prototype with many potential areas for improvement.

One area is the ability to customize the notification alerts (what information to present,

frequency of alerts, types of alerts, ability to ignore, etc). The current notification system

could become unusable due to too many dynamic updates. The prototype was also limited

in how it reacted to some dynamic updates. For example, when the selected node was

deleted or hidden, the navigator selected the parent node and notified the user. This may

not be optimal behaviour, and further testing is required.

 23

Future Directions

It seems that it would be very valuable if content could always be distinguishable from

presentation, regardless of how it was generated or structured. There are several strategies

that could be explored in future work. It could be useful to have two distinct sets of tags

for each category. This would solve some of the issues mentioned earlier, but could make

development quite cumbersome. Another possible strategy is to build a system where the

DOM is composed entirely of content nodes, and the visual layout is created in a separate

layer. For example, CSS could be expanded to include sophisticated layout and graphical

rules. This has the potential to achieve the goals of this framework, but it is not clear if

such a system would be too complicated to use.

Future work on the screen navigator could include further optimizing web page

interactions to meet different users’ needs. For example, classifying dynamic updates and

providing specialized ways of dealing with them, and customizing the way different

devices interact with a web page by using the event model being developed by the W3C

Indie UI group (Craig & Cooper, 2013).

Conclusion

This project involved developing a framework for building web pages and dynamic web

applications that offered flexibility to developers and had accessibility built-in. The goal

 24

was to explore whether accessibility can be a fundamental part of the web platform,

instead of requiring additional steps. It also explored major gaps in screen readers and

included a prototype screen navigator that demonstrates how assistive technologies could

interact with dynamic web pages built using this architecture. The goal of the screen

navigator was to explore more efficient ways for screen readers to interact with dynamic

web pages.

The approach for the framework was to separate content (and its interactions) from the

presentation (and code to drive it). The framework made it easy to add user interfaces to

the content layer. The content layer was left exposed to the user’s device to allow

optimization of the user experience. In this way, the content layer was a base for

graphical applications as well as an interface for all kinds of devices and assistive

technology. The main contribution of this project was to build a prototype of this

architecture in HTML, CSS and JavaScript, and explore its benefits, development

patterns, ease of use and gaps. The findings were that this architecture was effective at

building dynamic, graphical web applications, and offered flexibility and efficiency to the

developer. Two development patterns were identified in building web pages with this

architecture. The project found several gaps in the prototype: the content layer had

restrictions on how nodes were referenced, and there was a small performance penalty. It

was also not obvious how best to organize the content layer. This architecture provided an

effective interface for a screen navigator to interact with dynamic content; however, it

 25

was difficult to generalize this approach to other assistive technologies. Two approaches

that have the potential to overcome these gaps were presented for future study.

The main finding of the prototype screen navigator was that it is possible to have

efficient, non-visual interaction with a dynamic web page. Navigating a web page by

following the hierarchical structure of the content allowed for building an accurate mental

model of the content, efficient navigation, easier tracking of one’s position, and providing

explicit information about the content. It also included an effective notification system for

dynamic updates of the web page, and presented future testing and enhancements of the

system. The main contribution of this prototype was to demonstrate how assistive

technology could optimize the experience for the user when the AT has direct access to

the content layer of a web page. It also showed that accessibility could be achieved

without requiring extra steps from the web page’s developer.

This project demonstrated benefits and gaps in the presented architecture, and it presented

several directions for future study.

 26

References

Anne van Kesteren, Aryeh Gregor, Lachlan Hunt, & Ms2ger. (2012, December 6).

DOM4 - W3C Working Draft. Retrieved July 9, 2013, from

http://www.w3.org/TR/dom/

Bigham, J. P., Cavender, A. C., Brudvik, J. T., Wobbrock, J. O., & Lander, R. E. (2007).

WebinSitu: a comparative analysis of blind and sighted browsing behavior. In

Proceedings of the 9th international ACM SIGACCESS conference on Computers

and accessibility (pp. 51–58). New York, NY, USA: ACM.

doi:10.1145/1296843.1296854

Brown, A., & Harper, S. (2013). Dynamic injection of WAI-ARIA into web content (p.

1). ACM Press. doi:10.1145/2461121.2461141

Brown, A., Jay, C., Chen, A., & Harper, S. (2012). The uptake of Web 2.0 technologies,

and its impact on visually disabled users. Universal Access in the Information

Society, 11(2), 185–199.

Craig, J., & Cooper, M. (2013, January 22). IndieUI: Events 1.0. Retrieved July 10, 2013,

from http://www.w3.org/TR/indie-ui-events/

Event Handler Attachment | jQuery API Documentation. (n.d.). Retrieved July 6, 2013,

from http://api.jquery.com/category/events/event-handler-attachment/

Mynatt, E. D. (1992). Auditory Presentation of Graphical User Interfaces. In Proceedings

of the 1992 International Conference on Auditory Display (pp. 533–555).

Addison-Wesley Publishing Company.

 27

Mynatt, E. D., & Edwards, W. K. (1992). Mapping GUIs to auditory interfaces (pp. 61–

70). ACM Press. doi:10.1145/142621.142629

Scheuhammer, J., Cooper, M., Pappas, L., & Schwerdtfeger, R. (2013, February 25).

WAI-ARIA 1.0 Authoring Practices. Retrieved July 9, 2013, from

http://www.w3.org/WAI/PF/aria-practices/

Takagi, H., Saito, S., Fukuda, K., & Asakawa, C. (2007). Analysis of navigability of Web

applications for improving blind usability. ACM Trans. Comput.-Hum. Interact.,

14(3). doi:10.1145/1279700.1279703

The Extensible Stylesheet Language Family (XSL). (n.d.). Retrieved January 16, 2013,

from http://www.w3.org/Style/XSL/

Treviranus, J. (n.d.). Nimble Document Navigation Using Alternative Access Tools.

Retrieved January 15, 2013, from

http://www.ra.ethz.ch/cdstore/www6/Access/ACC202.html

WebAIM: Screen Reader User Survey #4. (2012, May). Retrieved July 9, 2013, from

http://webaim.org/projects/screenreadersurvey4/

