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The authors explore how current mainstream data-driven AI approaches can be questioned 
critically from a perspective of computational creativity and ecosystemic art. This centres on a 
critique of the future as being over-determined by the past; both from the data used, and in the 
questions or objectives assumed by training. The main contributions of this paper are to apply 
alternative creative approaches to nature-inspired artificial intelligence, and to detail some of these 
through their embodiment in the authors’ artwork “Infranet”. Infranet is a neuro-evolutionary art 
installation that exhibited at three international locations over 2018-2019. It uses geospatial data of 
the host city not as a training material but as a habitat for artificial life. In contrast to training-based 
AI systems, in Infranet there is no objective or fitness function and very little evolutionary pressure 
or competition. Moreover, it eschews the trend of a large and pre-specified neural network 
structure in favour of a population of thousands of small interacting neural networks, each with 
distinct structure, in a "liquid" process of continuous reorganization; resonating with some 
contemporary theories and models of non-conscious cognition in biological and ecological 
systems.  

Artificial intelligence. Artificial life. Data art. Computational creativity. 

1. INTRODUCTION 

The rapid growth of Artificial Intelligence (AI) in 
recent years, driven significantly by the remarkable 
successes of machine learning (ML) methods 
training deep networks upon vast amounts of data, 
has not only placed AI in the centre of public 
attention, but is also increasingly embedding it into 
the everyday systems within which we live our 
lives. Artists have responded to this growth in many 
ways, such as using AI as a creative or analytical 
tool or critiquing by revealing the vast scales of 
data used and the dangers of bias embedded in 
them. 
 
Our concerns as artists regarding machine learning 
here became twofold. Both regard the past (the 
“known”) over-defining the future (the “unknown”).  
 
First, an AI trained on a store of data propagates 
the strengths and the weaknesses of that data; and 
the subsequent application of such an AI effectively 
bottlenecks the future into the terms of its past 
(which is why the problem of bias becomes so 
important). A once-trusted dataset that turns out to 
be unrepresentative will promulgate biases as the 
networks trained upon it continue to be used. And 

even an AI trained on a dataset that is believed to 
be unbiased may develop and propagate blind 
spots as it is applied in a complex and changing 
world (Roselli et al. 2019). More generally, the 
proliferation of data-trained AIs broadcasts a 
tendency to focus on whatever has been most 
easily measured, at the expense of what isn’t easily 
measured, as well as the risk of mistaking a map 
for the territory. 
 
Second, training typically optimizes for utility 
performance for a clearly defined objective 
question, such as, “does this image contain a cat” 
or “how to most efficiently navigate a maze”. The 
objective function is by definition biased toward a 
specific utility (and against the implicit contrast 
space). Moreover, since the objective function is 
defined in advance, it also casts this shadow into 
the future.  
 
The main contributions of this paper are to explore 
alternative creative approaches to artificial 
intelligence and artificial life, through the lens of the 
artwork “Infranet”. Infranet uses geospatial data as 
a habitat for a large population of artificially 
intelligent virtual creatures. The design of this 
system eschews mainstream methods of artificial 
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intelligence, instead taking inspiration from natural 
creativity and cognition. The paper will elaborate an 
analysis of the system’s design and its evolutions, 
and we will share new insights in order to enrich 
broader discussion about creative artificial 
intelligence and living data in art.  

2. SEARCHING FOR CREATIVE INTELLIGENCE 

Machine learning with neural networks is an 
originally biologically inspired field of computer 
engineering coming from a historical desire for 
generalized prediction. A neural network model 
produced by ML is effective if it will often make 
accurate predictions. It thus follows a statistical 
genealogy––trained networks are essentially 
multidimensional variants of line graphs fitting 
experimental data–and represents induction rather 
than deduction (and has very little to say so far 
about abduction). Even in unsupervised learning, 
where the data is unlabelled, the goal is still to 
create a predictive model of a “latent space” the 
data suggests. The method is an approximation, 
carried out numerically, which means making lots 
of heuristically informed, somewhat randomized 
guesses (exploration), and empirically filtering 
down to the most satisfying results (exploitation). 
As effective as such approximations can be, when 
turned to questions of creative intelligence, it leads 
to several problems as outlined in this section.  

2.1 The problem of algorithmic specificity 

First, most algorithm structures are effective at 
certain kinds of problem but are ineffective at 
others. For example, perceptrons (neural networks 
with no hidden layers) can only learn linear 
functions and are incapable of awareness of 
nonlinear spaces, whereas networks with hidden 
layers can approximate more complex solution 
spaces. For example, convolutional neural network 
structures are well-suited for image recognition 
tasks, while recurrent neural network structures 
work better for speech recognition sequences, and 
so on. More generally, networks and algorithms 
have structural bias; their structure is an image of 
the problems they can fit well.  
 
Second, building and training networks requires the 
choice of hyperparameters, such as the topologies 
of hidden layers, the learning rate, batch sizes, 
regularizer parameters, etc., which have to be 
tuned carefully so that a machine learning model 
can solve a desired problem.  
 
But there’s “no free lunch”. Any algorithm’s 
elevated performance over one class of problems 
is offset by poorer performance over another class, 
and no optimization algorithm outperforms any 
other when averaged over all problems (Wolpert & 
Macready 1995; Adam et al. 2019). Moreover, 

there’s no way to know in advance what neural 
topologies and what hyperparameters best fit a 
new problem domain, beyond a few heuristics and 
varieties of population-based trial-and-error (Burkov 
2019).  
Furthermore, the value of creativity is characteristic 
of problems that are often multiplicities that are 
difficult to define precisely or cannot be stated in 
advance, since the terms and structures of its 
questions may themselves need to change by 
context and in time. As such, there is no ideal best 
candidate structure to be found (though there may 
be a diversity of good candidates for any particular 
moment). Therefore, we suggest that an open-
ended world requires a system that a) can rewrite 
its own structure to adapt to the world, and b) can 
propose and evaluate many possible structures at 
the same time. Genes and neural cortices are 
natural examples of such structural plasticity and 
collective evolution. 

2.2 The problem of objective functions 

There is an assumption often made in training an 
AI that the problem being optimized (the “search 
space”) will produce optimal solutions under the 
pressure of some measure of success (validity, 
efficiency, effectiveness, reward, etc.) The pressure 
of this measure embodies an ”objective function” 
that drives training of the AI through the landscape 
of the search space toward the optimal points that 
maximize this measure. The assumption is that not 
only such a landscape exists, but also that is 
amenable to hill-climbing/gradient descent 
methods. Any aspects or features that do not 
present such a landscape, or for which measures 
are confounding, are likely to be excluded.  
 
Evolutionary approaches have been suggested as 
alternative methods for problems in which the 
"search space" is high-dimensional or not "well-
behaved", as they can explore multiple parallel 
objectives to avoid getting stuck or being 
“deceived” by local optima (Miikkulainen 2020). 
However, the externally imposed and pre-defined 
objective function remains, now cast as an 
evolutionary fitness function. To the extent that 
such measures are defined externally and remain 
static, they represent selective breeding to a frozen 
standard rather than the creative capacities of 
natural evolution as such. There is a risk that an 
important outlier state, one which might in fact be 
key to a creative paradigm shift equivalent to 
natural speciation would not be included at all in 
the selection. Natural evolution cannot be 
understood in this way. There is no teleology, no 
fitness function as such, rather a fuzzy and 
changing set of conditions of viability. Furthermore, 
since ecologies form densely linked networks and 
histories of internal feedback, its viability 
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landscapes are actively constructed by the ecology 
itself.  
 
The more we examined AIs pre-trained on pre-
defined “objective functions”, the more the “No-
Face” character of Spirited Away came to mind 
(Sen to Chihiro no Kamikakushi 2001). No-Face is 
an initially small and voiceless god, who 
nevertheless grows monstrous as it gives more and 
more and more of whatever it is that you show that 
you like, seemingly unable to understand anything 
else, until you are consumed by it.  
 
External (extrinsic) pressures, like objective and 
fitness functions, do not seem to lead to creative 
responses in natural, human, or artificial cases. In 
studies of human creativity, external pressures play 
much smaller roles in creative discovery than 
previously thought (Baldassarre 2011). Fitness 
functions alone are insufficient to explain 
evolutionary innovations such as sight and flight. 
And artificial systems driven by extrinsic, designer-
given objectives can still get stuck (Lehman & 
Stanley 2008).  
 
In contrast, we looked at algorithms that use 
intrinsic motivations or otherwise avoid the use of 
fitness or objective functions. For example, the 
Novelty Search method has been shown to 
outperform fitness-based measures in a variety of 
complex problem domains. In this method, 
evolutionary candidates are selected not by scores, 
costs, or similar measures of effectiveness, but 
simply for having done something that hasn’t been 
done before (Lehman & Stanley  2011; Woolley & 
Stanley 2011). Even for objective-driven problems, 
a combination of novelty search with regular 
optimization has outperformed objective 
optimization alone (Mouret 2011; Cuccu & Gomez 
2011; Nguyen et al. 2015b).  
 
Removing extrinsic objectives might also alleviate 
problems of longer-term stagnation. It has been 
demonstrated that evolvability, that is, the tendency 
of living organisms to develop increasing diversity 
and evolutionary potential over time, results without 
any selective pressure at all, but rather from neutral 
drift through genotypic space coupled with 
evolution’s passive tendency to accumulate niches 
(Lehman & Stanley 2013). This is reminiscent of a 
similar argument put forward by Kauffman with 
regard to the inevitable proliferation of organic 
polymers due to natural reaction gradients toward 
new compounds of existing molecules (Kauffman 
2002). That is, life’s creativity may have more to do 
with its “strongly constructive” microstructures 
(Fontana 2006) than selective pressures of 
evolution; and that beyond sufficient complexity, 
this process may be self-sustaining.  

2.3 The problem of anthropocentrism 

What AIs can already achieve is often quite 
astounding. For example, a Deep Neural Network 
trained on ImageNet to caption images may appear 
to have remarkable capacities approaching human-
level common understanding of the content of of 
new images (Krizhevsky et al. 2012). However, we 
must beware of anthropomorphic biases: the same 
networks can evoke the same responses when 
presented with inputs that appear very wrong or 
even random to humans (Szegedy et al. 2013; 
Nguyen et al. 2015a), revealing how alien “what it 
is like to be” the AI really is (Brooks 2017). We can 
take this as a warning to be wary of human-centric 
(and consciousness-centric) conceptions of 
cognition as unnecessarily limiting. 
 
Similarly, we are wary of limiting investigations of 
creativity to human standards. A working definition 
supported by many researchers in computational 
creativity describes it as “machines producing 
artefacts that would be considered creative if 
produced by a human” (Jordanous 2012), but this 
human-centric definition engenders blind-spots 
toward non-human creativity and collaborative 
human-machine creativity (Arriagada 2020; Ragot 
et al. 2020). We do not even have a coherent grasp 
of what “intelligence” and “creativity” mean in the 
human case (for example, Cardoso et al. 2009). 
Our concern is that if we focus on a division 
between human and non-human, in creativity and 
in general, we will end up enforcing the division by 
ourselves (for example the circular argument in 
Hertzmann 2020).  
 
Instead, we look to the adaptive creativity found in 
natural systems. Here we find resonance with a 
model of creativity found in Henri Bergson’s 
distinction between mixtures of quantitative and 
qualitative difference (Bergson 1911, and 
elucidated in Deleuze 1990). The tendency of 
uncreative systems is an entropic “relaxation” 
toward equilibrium distributions whose variations 
are quantitative, and as such are generally 
predictable and can be numerically approximated 
by few parameters. The echoes of “gradient 
descent” methods of statistical modeling in AI here 
should be clear. In contrast, creative living systems 
tend to complexify toward heterogenous mixtures 
of non-equivalent qualities that are more resistant 
to reductive approximation (e.g. speciation and 
emergence). In short, natural creativity is a 
continual differentiation into new variations of kind. 
Here we find resonance with the production of new 
structures for adaptive change, and the seeking of 
difference as found in novelty search. 



Creative Intelligence Within the Artificial Life Installation “Infranet” 
Graham Wakefield & Haru Hyunkyung Ji 

202 

3. INFRANET 

Infranet began as a commissioned work for the 
Gwangju Media Arts Festival. In responding to the 
theme of “Algorithm Society: Birth of the Machine 
God” we started with the notion that intelligence is 
not a human privilege but a phenomenon of 
cognition in general. As an embedded condition for 
all living systems, and now also machinic systems, 
it forms a “planetary cognitive ecology” (Hayles 
2020). 

 
Figure 1. Infranet: Gwangju. Gwangju Media Art Festival 

2018 "Algorithm Society: Birth of The Machine-God", 
Asia Culture Center (ACC), Gwangju, Korea. November-

December 2018. 

 

 
Figure 2. Infranet: Vancouver. IEEE VIS Arts Exhibition, 

Vancouver, Canada. October 2019. 

 

 
 

Figures 3a,b. (Middle, Below images) Infranet: NYC. 
Korean Media Arts Festival: “Techno-imagination: Living 

Data.” Sylvia Wald & Po Kim Art Gallery, Manhattan, 
New York, USA. August-December 2019. 

Infranet has exhibited at three locations during 
2018 and 2019 (see Figures 1-3). In each case the 
landscape of the simulation consisted of a variety 
of geospatial data gathered on the metropolitan 
region surrounding the exhibition location; these 
have included Gwangju (South Korea), New York 
(USA), and Vancouver (Canada). However, 
Infranet is not a map or visualization of the city 
data; rather, the data is treated as a habitat for a 
population of AIs as artificial life creatures. 
Moreover, these AIs are not employed to discover 
or visualize specified aspects of interest to us from 
the data, rather the projected images are traces of 
the processes, experiences, and collective interests 
of the creatures themselves. 
 
In ecosystemic art, it is well recognized that depth 
of an ecosystem’s behaviour is deeply dependent 
on the qualities of the environment it inhabits 
(Antunes et al. 2014). A vibrant and diverse 
ecosystem needs an environment that is rich with 
niches in a variety of interestingly non-uniform and 
non-random distributions to support it. Geospatial 
city data can be very rich in this way. But to take 
advantage of a complex environment, life also 
needs to match its requisite variety, that is, to be 
able to generate a repertoire of responses which is 
(at least) as nuanced. For this purpose, we adopted 
neural networks with dynamic topologies within an 
evolutionary simulation that is unsupervised and 
without objective, and highly liquid through social 
exchanges inspired by non-human forms of 
collective and adaptive cognition. 

3.1 A dynamic diversity of tastes 

Infranet supports around 4000 to 8000 mobile 
creatures, each with its own neural network. They 
have sensors that can read the local underlying 
data, but these senses are biased by a personal 
“taste” or “scent” that filters most of the data away. 
A creature is most sensitive to features with very 
similar (positive correlation) or very dissimilar 
(negative correlation) taste, but blind to features 
that are unrelated to their taste. It is as if, for any 
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particular creature, the majority of the data simply 
doesn’t exist.  
 
As creatures move through data space they leave 
fogs and trails of their scent behind. These fogs 
and trails, and neighbour interactions, are the only 
element visualized in Infranet (see Figure 4). The 
colour depends on the creatures’ scent, revealing 
shifting tastes and kinship relations through the 
population. Fogs disperse widely and quickly, 
revealing how they pulsate and exchange between 
each other. Thinner trails remain in place for a long 
time, a kind of long-term memory that gradually 
desaturates and then evaporates, revealing how 
creatures have experienced the city.  
 
Creatures are also aware of these trails and fogs, 
as filtered by their own taste. Together, sensations 
of city data and creature trails feed into the neural 
network that is unique to each agent, which in turn 
feeds back to their motion, spiking, and changing 
taste (see Figure 5).  
 

 
Figure 4. (Right to left, top to bottom) Nine detail frames 
in an evolution of Infranet: Gwangju, taken at an interval 
of two seconds between each image. Communications 

between neighbours–sharing ‘scent’ and potentially also 
neural networks–appear as transitory lines. Agents also 

inscribe fogs and trails of their passage that are 
comparatively more persistent in space, coloured 

according to their scent. 

 

 
Figure 5. The principal dynamics of a creature in 

Infranet. The creature (top-left) senses the city data 
(bottom-left) as well as the existence of other creatures’ 
inscriptions in space, the product of which feeds back to 

the creature’s intrinsic measure of well-being. The 
senses are filtered by the creature’s internal bias 
(“scent”), and then fed into the input layer of the 
creature’s neural network (top-right). The neural 

network’s hidden structure is unique to the creature and 
changes during the creature’s lifetime by horizontal 

transfer with other creatures (bottom-right). The output of 
the neural network directs the creature’s motion, and 

changes of bias, which is also influenced by that of other 
creatures nearby (top-centre). 

3.2 Viability conditions 

In Infranet there is no “fitness function” and very 
little evolutionary pressure or competition in the 
system. Instead, there is only a viability condition 
expressed as two intrinsic motivations: 1) to have 
recently encountered data of the kind the agent has 
taste for, and 2) to have recently encountered 
traces of other agents. In plain terms: a primal need 
to verify the world still exists, and that one is not 
alone in it. In the absence of these experiences, a 
creatures’ internal sense of well-being decays, and 
if this reaches a critical threshold, the creature is 
removed and replaced with a newly created 
creature at a random location. 

3.3 Dynamic micro-structures 

Unlike many neural network approaches, in Infranet 
each creature’s network is different in topological 
structure. To enable each agent to have a different 
structure of neural network, and still apply 
evolutionary dynamics, we utilized the NEAT 
methodology (Stanley & Miikkulainen 2002) as 
applied in (Waagenar 2017).  
 
However, unlike typical evolutionary systems, 
network variation is not tied to reproductive birth, 
nor are generations run in synchronous batches. 
Instead, these structures can change within a 
creature’s lifetime as creatures exchange networks 
between each other, overlapping asynchronously at 
high frequencies (sometimes multiple times per 
second). With each pulse, or chirp, they ‘sing’ their 
neural structure; and a neighbor may pick up this 
song, with mutations or by mixing with their own 
(via crossover operations), to produce a new neural 
structure in themselves. This highly dynamic 
process is not unlike the horizontal gene transfer 
that occurs in many microbial quasispecies.  
 
Adoption of neighbour’s networks is driven by 
relative measures of difference: creatures with 
lower wellbeing are more likely to adopt networks 
of their neighbours, especially if the neighbor’s 
taste is very different.  

3.4 Dynamic macro-structure 

The creatures move through space in pulsations 
akin to neural spike trains. Spikes determine speed 
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(so over-excited creatures can 'overshoot' features, 
lower activations accumulate deeper inscriptions). 
 
They also try to synchronize with their neighbours 
through entrainment, like flashing fireflies. This 
creates a second “social network” through which 
the more slowly evolving tastes of creatures can 
diffuse. A creature at a lower point of the pulse 
intensity is more likely to shift its taste to align with 
a neighbour whose intensity is currently higher. 
Visually, brighter creatures reach out with thin lines 
like feelers in proximity to their dimmer neighbours. 
 
As creatures’ movements cause neighbour 
relations to continually shift, this macro-structural 
network resembles a “liquid neural” network (Pinero 
& Solé 2019) of a second-order superorganism 
comprising around 40,000 neurons and 150,000 
connections.  
 
Movement also prevents the entrainment from 
stabilizing and the resulting intensity gradients lead 
to diffusions of taste through the population, clearly 
visible in the projected visualization as linear, 
circular and spiral waves of colour shift through the 
population.  

4. ANALYSIS 

We recorded all simulation activity, including agent 
and neural-network states over a 10-minute period, 
comprising over 7,000 simulation steps, in which 
each of 4096 creatures’ networks activates (30 
million activations in total).  
 
Lifespan data verified our strategy to minimize 
selection pressure. More than half the population 
survived the entire period, and likely would have 
persisted far longer. Only around 3,000 times (once 
per 10,000 steps) did any creature’s well-being fall 
below the viability threshold, causing them to be 
replaced by new creatures; and the majority of 
these events ocurred within the first half-minute of 
the simulation, likely due to a lack of trails to 
discover.  
 
Exchange of networks was far more fecund: over 
10 minutes, around 244,000 events occurred in 
which a creature copied the network of a 
neighbour, with a 10% chance of applying a 
mutation. Examples of initialized and evolved 
networks in Infranet are shown in Figure 6.  
 

 
Figure 6. Diagrams of creature neural networks recorded 
in Infranet. Weights and biases are omitted to focus on 
structural features. Left: All creatures have three inputs 
(bottom), four outputs (top), and begin with a fully 
connected network with no hidden nodes and logistic 
transfer functions. Right: An example neural network 
after living in the simulation for a period of time. This 
creature has developed two hidden neurons with 
different transfer functions (indicated by colour), and 
several neurons have developed lateral connections and 
feedback self-connections. 

 
The average lifespan of a specific neural network 
instance is around 120 activations between each 
mutation. However, this rate appeared to be very 
bursty for each agent, with often a series of rapid 
adoptions followed by longer periods of stability; we 
presume this arises due to changes of neighbour 
communities and their relative well-being and pulse 
phase alignment. 
 
As the 4096 creatures adopted and mutated 
neighbour’s networks, over 10 minutes a total of 
25,000 distinct mutated network structures were 
generated.  We traced the lineages of inheritance 
of these adoptions, whose histogram revealed a 
very sharply exponential distribution in which most 
networks are rarely copied, while a very small 
number of networks lead very long lineages.  
 
We ran another simulation for comparison in which 
adoptions occurred independently of creature 
dynamics, by selecting creatures and distributing 
adoption events randomly among the entire 
population. In general, the distribution in Infranet 
skews toward more prolific inheritance than in the 
randomized model. In Infranet, the most prolific 
candidate was adopted around 2,000 times 
(forming 1% of all recorded adoptions), compared 
to 1,000 in the random model. Ten networks in 
Infranet were half as prolific, compared to none in 
the random model. At the other extreme, around 
half of the networks in the random model were 
never copied at all, compared to 35% in Infranet. 
These figures identify that behaviour is certainly 
distinguished from well-mixed random history, and 
has a greater tendency toward inheritance, while at 
the same time not producing a monoculture.  
 
We also ran a variant of the system in which 
adoption was implemented by crossover followed 
by mutation. The most striking difference found was 
divergence of network complexity: without 
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crossover, networks diverged to a range of up to 7-
10 neurons and 7-17 connections. With crossover, 
networks diverged to 7-13 neurons and 11-100 
connections. Since mutations are evenly balanced 
in probability of adding or removing nodes and 
connections, and selection pressure is low, this 
suggests an implicit neutral drift toward network 
complexity inherent to the crossover operation 
itself. Visually, the simulation with crossover also 
showed smaller neighbourhoods of similarity, but 
local variations lasted longer. 

5. DISCUSSION 

The use of machine learning to solve pre-stated 
problems articulated on pre-given data results in 
predictive models at risk of creating echo 
chambers.  
Our observation is that an artificial intelligence 
mustn’t work alone but must be open to and 
embedded within a world as a balanced complex 
adaptive system. Moreover, we want to see AIs 
that can do more than satisfy our demands by 
developing intrinsically, just as biological 
intelligence develops itself in the context of a living 
world. This makes artists (and developers, 
policymakers, etc.) into gardeners, an idea 
characteristic of the nascent days of artificial life 
research.  
 
Our general approach to computational creativity is 
thus oriented to population-based systems that can 
rewrite their structures in coordination with their 
lived experiences, according to motivations that are 
intrinsic to the dynamics of the system. In Infranet, 
we allowed creatures’ neural networks to change in 
structure over their lifetimes. They do this 
continuously, exchanging networks every few 
chirps by mutating their own neural structures 
according to the structures they hear from others. 
This is like the continuous genetic exchange of 
bacterial quasi-species, but perhaps also the 
contagious transfer of ideas. Moreover, since the 
creatures are moving and changing neighbours, the 
shifting population as a whole creates a much 
larger, “liquid” neural network of ever-changing 
structure, where new “ideas” can move in waves 
through the whole.  
 
It seems that AI will become ubiquitous, smearing 
like new media to all aspects of life, into what 
Katherine Hayles described as a planetary 
cognitive ecology (Hayles 2020). We are therefore 
cautious about static performance measures and 
assumptions, as seen in supervised machine 
learning, that can only predict what is already 
known. We are cautious of the risk in working with 
‘low hanging fruit’ of available data, readily 
measurable properties, known structures etc., as 
“exploiting too soon”, and thus over-determining 
available paths of action and limiting futures. We 

don’t want to live in a future already paved by the 
past. Instead, we see an imperative for creativity 
oriented to an open future.  
 
Now that 96% of the Earth’s biomass is in service 
to us (Bar-On et al. 2018) we have reduced the wild 
unknown to rare pockets and islands. This seems 
characteristic of a more general tendency: directly 
or indirectly, we displace anything we can’t 
measure or make use of, even without knowing 
what it might be, like dominating a market or 
controlling the gateways, and despite the fact that 
optimization breeds in fallibility. This points to the 
value of creativity beyond art; for example, again in 
thinking of the planetary cognitive ecology, and 
thinking beyond robustness toward antifragility 
(Equihua et al. 2020). We hope that a better 
understanding of creativity, beyond the human-
centric, may point again to qualities of the wild. 
Perhaps including artificial creativity within the 
planetary cognitive ecology can bring us to the wild 
too. 
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