OCAD University Open Research Repository

Integration of methodologies through an academic toolkit for the design of products services systems for sustainability: -SPSS- in Colombian contexts

Vargas, Espitia Adolfo and Guataquira Sarmiento Nataly, Andrea and Àlvarez Quintero, Christian Daniel and Rugeles Joya Willmar, Ricardo (2018) Integration of methodologies through an academic toolkit for the design of products services systems for sustainability: -SPSS- in Colombian contexts. In: Proceedings of RSD7, Relating Systems Thinking and Design 7, 23-26 Oct 2018, Turin, Italy.

[img]
Preview
Text
Vargas_Slides_2018.pdf

Download (4MB) | Preview
[img]
Preview
Image
VargasEspetia_MM_2018.jpg

Download (1MB) | Preview
Official URL: https://systemic-design.net

Abstract

The design for sustainability in colombia

Colombia, one of the countries in the world with the greatest wealth in natural resources (Arbeláez-Cortés, 2013; Sánchez, 2002), it has presented an unprecedented deterioration in the last two decades of multiple factors, of which, for the purposes of this research project will expose the lack of strategies to train professionals that respond to complex socio-environmental problems. (Márquez, 2001; Posada, 2007; Sánchez, 2002).

To attack this problem, Colombia has implemented the National Policy of Environmental Education (PNEA) and “Bases for a quality policy of higher education in Colombia”, both strategies are committed to environmental research from different disciplines and their close relationship with the training processes, seeking in this way that the proposals respond to problems of the real context. (Molano Niño & Herrera Romero, 2011) .

Regarding the program of industrial design, its history at the national level begins with courses taught in 1966 and formalized between 1973 and 1977 (Camacho-lotero, 2014; Fernández, 2008), subsequently and hand in hand with the trend of environmentalization of the disciplines (Andrade Vicente, Frazão, & Moreira da Silva, 2012; Ceschin & Gaziulusoy, 2016; Fuad-Luke, 2009; Luffiego García, 2000). Design of the SiNaDi is a national program created, seeking to “generate the necessary conditions to advance towards an inclusive and sustainable society culturally, environmentally and economically” (Torres, 2015,p.45). This new vision of the program has demanded changes of pedagogical paradigms (De Miguel, 2005) and consequently academic courses of eco-design began to appear in the different curriculum of the design programs supported in the experiences of the exterior (Tukker, Haag, & Eder, 2000), in all cases, there have been valuable contributions but lacking an articulation with the national reality”. For this reason, the research question is posed: IS IT POSSIBLE TO DEVELOP A TOOLKIT THAT SUPPORTS TRAINING PROCESSES IN DESIGN FOR SUSTAINABILITY, RECOGNIZING THE PARTICULARITIES OF THE COLOMBIAN CONTEXT? Based on this premise, the process discussed below is addressed.

About the dsxc toolkit

According to Geli de Ciurana (2005) “The environmentalization of curriculum university should consider” complex thinking, flexibilization, and curricular permeability, contextualization (time and space), constructivism, consideration of cognitive, affective and action aspects of people, integration of theory and practice, critical and projective thinking, didactic development and better spaces for participation”. Starting from this premise, the DSxC is designed as a toolkit that supports academic processes of the sustainable design by grouping, organizing and presenting 10 different methodological frameworks, under the premise that the participants build their own process.

Therefore, to group and organize the methodological frameworks, a review of 10 of the methodologies is carried out (Shedroff, 2009) around Design for Sustainability considering first of all those that address the problems in a systemic way (Aguayo, Estela, Lama, & Soltero, 2011; Bovea & Pérez-Belis, 2012; Ceschin & Gaziulusoy, 2016; Crul, Diehl, & Delft University of Technology, 2007a; de Pauw, 2015; Jones, 2014; Navarro, Rizo, Ceca, & Ruiz, 2005; Pigosso, McAloone, & Rozenfeld, 2015): PRODUCT SYSTEM SERVICE DESIGN FOR SUSTAINABILITY -SPSSDE-, SYSTEM DESIGN, BIOMIMICRY, CRADLE -TO- CRADLE –C2C-, CIRCULAR DESIGN , METHOD OF SCENARIOS -BACKCASTING-, HUMAN CENTERED DESIGN -HCD-, LIFE CYCLE ASSESSMENT – LCA -, DESIGN FOR EXCELLENCE -DFX- and PERMACULTURE.

Regarding the Colombian context, the COLOMBIAN ATLAS FOR SUSTAINABILITY is developed in which is presented all the collected information -government platforms,
studies, statistics, reports, big data- that allow a first approach to understanding the context according to the tool and the methodologies exposed.

On the second hand, to present the DSxC toolkit, researching and analysis of similar tools has been carried out (Crul, Diehl, & Delft University of Technology, 2007b, Guild, 2011, IDEO.org, 2008, Starkey, 2016, Vezzoli et al. ., 2014) in the search for the best possibilities for the presentation of information to the university academic community; This analysis shows the need to propose a physical document that presents the generalities of the process supported in a virtual platform that delves into detail the information of interest.

About the methodological frameworks and their contributions

After reviewing the methodologies, the following assessments are briefly concluded: THE SYSTEMIC DESIGN (Luigi & Bistagnino, 2009) provides principles and strategies to understand complex situations with a strong focus from visual communication; the SSPSDE (Vezzoli et al., 2014) is a rigorous and systemic exercise that presents a large number of strategies focused on the design of products associated with services; the CRADLE TO CRADLE -C2C- (McDonough & Braungart, 2002) implements a vision from closed production cycles and corporate responsibility; BIOMIMICRY (Benyus, 2002) provides a conceptual framework based on natural principles; HUMAN CENTERED DESIGN -HCD- (IDEO.org, 2008) Its main focus is the collaborative work, specifically in the methods to identify and characterize the actors as well as how to relate and make them participants in the project; DFX -DESIGN FOR EXCELLENCE- (Watson, Radcliffe, & Dale, 1996) is a compendium of functional strategies designed for the different phases of the life cycle of the product that can be used during the conceptualization and verification stage; LIFE CYCLE ASSESSMENT (Orrego, 2012) it is a widely used methodology with multiple approaches whose main objective is the analysis of negative impacts; CIRCULAR DESIGN (Moreno, De los Rios, Rowe, & Charnley, 2016) focuses on the development of proposals under the criteria of the circular economy; the BACKCASTING (Mendoza, Sharmina, Gallego-Schmid, Heyes, & Azapagic, 2017) allows us to plan a future scenario based on desirable variables including the prospective planning to achieve it, and finally the PERMACULTURE (Mollison et al., 1991) with its deep vision about sustainability provides an ideological course.

In total, 264 methods belonging to the 10 methodologies have been reviewed and categorized, of which 69 are concentrated in the research stage, 68 in the concept stage, 60 in the detail stage and 21 for the delivery stage, adding 46 design principles for the SSP approach. These are cataloged to facilitate the decision of the applicator in different criteria such as presence of online format, degree of complexity, degree of intervention,
execution time, qualitative/quantitative approach and use according to CVP, it is also grouped into sub phases of the DSxC ; in RESEARCH, it focuses on context, actors, problems/needs, case studies, and results; in CONCEPT, systems concept, systems design, SSP concept and results; in DETAIL, SSP design, evaluation, detail design and results; and finally in DELIVERY, planning, media strategy, iterations and results.

Dsxc, a kit “step by step”

In practice, the kit has 2 complementary versions: printed and online, the printed version is a quick guide and infographic with presentation of basic concepts about methodologies and their processes, list of methods, advice and warnings of use, and the online version which presents a detailed extension of the topics, links to the primary sources, links to the free formats -creative commons- downloads and multimedia supports. See table 2.
Participants in the process receive a step-by-step explanation on their first approach with the kit, then they begin to acquire the basic knowledge needed to develop a sustainable design process, once they obtain these pre-knowledge, they must choose the criteria for the development of the process – see Table 1-, then start the “process construction” selecting the methods according to the design phases. Throughout the process, the kit will accompany the participants by providing context data, advice, warnings, links, etc.

Conclusions

Education for sustainability from the academic processes typical of industrial design should be oriented to work on real processes -this criterion would imply a knowledge of the local realities in which it develops-, a limited time -defined by academic times-, a constructivist vision -allow the student to be part of the construction and supported in didactic processes that facilitate the implementation of scientific theory- this, together with the appropriation of the community in the territory, the university social responsibility and the capacity of the students in the generation of SPS that stimulate the sustainable growth of society.

Item Type: Conference/Workshop Item (Paper)
Uncontrolled Keywords: Systemic design, Colombia, Education for sustainabilityProduct-Service Systems for sustainability SPSS Product-Service Systems for sustainability SPSS
Date Deposited: 24 Jul 2019 13:23
Last Modified: 26 Jul 2019 17:50
URI: http://openresearch.ocadu.ca/id/eprint/2763

Actions (login required)

Edit View Edit View