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Abstract A key component of many systemic design processes is the development and analysis of 
systems models that represent the issue(s) at hand. Models often take the form of Causal Loop 
Diagrams in which phenomena are graphed as nodes with connections between them indicating an 
influencing relationship. Models provide systemic designers with a mechanism for stakeholder 
collaboration, problem finding, and generative insight, becoming powerful resources for use in visual 
argument. These functions are valorized in design thinking, but the potential of these models may 
yet be unfulfilled. We propose the exaptation of techniques from social network analysis and 
systems dynamics to uncover key structures, relationships, and latent leverage positions of modelled 
phenomena. We reframe these measures for systemic design and demonstrate their utility in a pilot 
study. By rethinking logics of leverage, we might make better arguments for change, finding the place 
to stand from which to move the world. 
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1. Introduction 

1.1. Systemic design and leverage points 

The practice of systemic design offers tools and approaches that can help find leverage in complex 
systems. Complex systems often produce emergent, counterintuitive behaviour that is difficult to 
predict by looking at the individual phenomena (Gharajedaghi, 2011). By capturing and illustrating 
how these phenomena interdepend through models, we may gain the ability to grasp this emergent 
behaviour. More importantly, we may be able to identify leverage points: places within a system in 
which a small shift produces big change (Meadows, 1997). 

The properties of complex systems (and of how people engage with them) present a number of 
issues that introduce bias and chance into the process of intervening on systems (Norman & 
Stappers, 2015). Given a model, systemic designers work through what they observe and interpret, 
engage in dialogue about what is important, and look for patterns. While some principles and 
processes exist (cf. Jones, 2014), developing models, identifying leverage points, and designing 
solutions tends to happen by "muddling through" a problem (Norman & Stappers, 2015; see also 
Simon, 2008, chapter 2).  

Systemic design models vary in type. Designers may create systems thinking or soft operations 
research (soft OR) models, whose purpose is to describe the system as comprehensively as possible 
(Forrester, 1994; Checkland, 1985). Models of so-called "soft" systems often take the form of causal 
loop diagrams (CLDs) in which phenomena are graphed as nodes with connections between them 
indicating an influencing relationship. Alternatively, designers may quantify the phenomena of a 
system’s variables through systems dynamics (Forrester, 1994). These approaches to modelling come 
with important trade-offs yet to be reconciled in modern methods. Systems thinking models are 
representative, but their insights may be invalid or inaccurate (Forrester, 1994). On the other hand, 
systems dynamics models are robustly analytical, but we may be analyzing an ill-developed 
representation of the problem system (Checkland, 1985). Further, in order to develop representative 
models, systemic designers must draw on diverse stakeholders (Jones, 2014; Stroh, 2015). The 
development of recent technologies and practices such as crowdsourcing (participatory systems that 
involve publics in a collaborative project; Lukyanenko & Parsons, 2012) and data science (a set of 
techniques and theories that help distill insight from data; Provost & Fawcett, 2013), the collection 
and organizing of large amounts of data becomes ever easier. This brings us to an important tension 
(cf. Maass, Parsons, Purao, Storey, & Woo, 2018). Larger, more complex, data-driven models are 
likely more representative, as they capture more perspectives and nuances than simpler models and 
as their representations can be tested through the simulations and analysis of systems dynamics. 
However, these models are also harder to learn, understand, and use (Rossi & Brinkkemper, 1996).  

Systemic designers must find ways of balancing the trade-offs between complex representativeness 
and ease-of-insight. In this paper we illustrate how techniques from graph theory and systems 
dynamics can be used to take advantage of the structural properties of these models of elements 
and connections to algorithmically identify leverage points in these models. These techniques 
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promise to help take advantage of big data in systemic design and advance our capacity to muddle 
through progress on wicked problems (Rittel & Weber, 1973). 

In the next subsection, we briefly introduce graph theory. In section 2, we introduce the concepts 
and metrics of centrality analysis and of structural analysis. In section 3, we relate the metrics from 
each of these methodologies to applications in systemic design and demonstrate their utility in a 
pilot study. Section 4 discusses the implications of these ideas, and section 5 concludes the paper. 

1.2. The potential of graph theory 

A graph is formally defined as a set of vertices and edges. An edge is defined as a pair of vertices, 
where each vertex in the pair terminates the edge (Ruohonen, 2013, chapter 1). In network analysis 
vertices correspond with members of the social network and edges with connections between them. 
In using these concepts in systems, we call vertices elements (the phenomena of the system) and 
their edges connections (how those phenomena influence one another). In graph theory, a walk (or a 
path) is a sequence of elements and their connections that begins at a given element and traverses a 
given connection to the next element, continuing until a given end element is identified. A walk that 
returns to the starting element is considered a closed walk and is called a cycle. In systems work, 
however, this is called a feedback loop. 

How may we use these concepts to analyze CLDs? Beck, Schoenenberger, and Schenker-Wicki (2012) 
advance four matrix-based approaches to analyzing systems dynamics phenomena as sets of 
variables. They define four variants of matrices that evaluate the relationships between variables and 
the system they are structured within. Schoenenberger, Schenker-Wicki, & Beck (2014) return to 
these methods to examine a systems model of terrorism. Le Blanc (2015) examines the indicators of 
the United Nations' Sustainable Development Goals as a network of interconnected phenomena, and 
uses some simple network measures to analyze how these indicators relate to one another. Mohr 
(2016) builds on Le Blanc's work to introduce several additional measures from social network 
analysis. Earlier work by the present author (Murphy, 2016) used some social network analysis 
measures on a CLD as a proof-of-concept to elevate the discussion of leverage points in a systemic 
design project. Potts, Sartor, Johnson, and Bullock (2017) introduce graph theory analysis methods in 
their exploration of system of systems engineering architectures. Finally, in a separate line of 
research, Oliva and other researchers have examined the graph structure of systems dynamics in 
terms of levels of causality and the nesting of loops (Duggan & Oliva, 2013; Kampmann & Oliva, 2006, 
2008; Oliva, 2003, 2004, 2018; Saleh, Oliva, Kampmann, & Davidsen, 2010).  

These papers serve as inspiration for the current project. However, none of these projects 
contextualize the analysis within the discipline of systemic design, nor do they relate their ideas to 
the search for leverage points. They also leave gaps between centrality and structural analysis. This 
paper presents three contributions: it brings these methods together for the first time, links this 
approach to systemic design, and relates the use of these analyses to the search for leverage points.  

2. Measures of graph centrality and structure 
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2.1. Centrality analysis 

Social network analysis involves the modelling and measurement of the connections between people 
and organizations in a directed graph, where people and organizations are represented by nodes and 
connections are represented by vertices (Carrington & Scott, 2011). By measuring the structure of 
these networks—say, how densely coupled they are, or how central a given node may be—we can 
learn important things about the nature of the network as a whole such as who is the "most 
important" member of the network (though the interpretation of "importance" is something of 
debate; cf. Freeman, 1979). 

We can likewise treat a CLD representing a modelled system as a directed graph of phenomena and 
their connections, using the algorithms of social network analysis to measure the centrality of the 
phenomena. This analysis can allow a systemic designer to identify important phenomena quickly 
and objectively (relative to the structure of the graph) regardless of the size or complexity of the 
map. 

A caveat is that these measures do not supplant one another; researchers in centrality analysis have 
not determined that there is, say, a most-central measure. They examine different—but related—
aspects of network structure and therefore offer different utility. It is up to the user of the metrics to 
examine the measures, the models they are analyzing, and to interpret the results. 

2.2. Structural analysis 

In addition to centrality, another school of analysis examines the structure of the cycles found in 
graphs. Known as structural dominance analysis or simply structural analysis, these methods were 
developed to help analysts partition and test system dynamics models (Oliva, 2004). However, these 
techniques seem to have been constrained to systems dynamics; their utility to help analyze systems 
thinking models is therefore untapped.  

Structural analysis involves identifying and measuring the structure of feedback loops of the systems 
as cycles in the model (Oliva, 2004; see also Kampmann, 1996 and Warfield, 1989). By doing so, 
analysts can develop partitions of the levels and cycles of the graph. Analysis of the level partitions 
results in a hierarchy of the causal structure of model's phenomena. Analysis of the cycle partition 
allows the analyst to identify a hierarchical structure of the model’s feedback loops. Both enable the 
analyst to isolate and understand the causal nature of the model's subsystems (Oliva, 2004). In other 
words, we may be able to use these measures to illustrate a hierarchy of causality in systemic 
phenomena.  

3. Leverage analysis 

3.1. Leverage measures 

Table 1 illustrates proposed translations of the techniques of centrality and structural analysis into 
what we have called "leverage measures" for systemic design.
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Table 1. Centrality and structural m
easures m

apped to leverage m
easures. 

 
Detail 

Original m
eaning 

Leverage m
easures in system

ic design 

Degree 
The num

ber of connections 
Higher connectivity to the rest of the netw

ork; influence, access, 
prestige (New

m
an, 2010) 

Im
m

ediate im
pact, sensitivity, resilience 

Indegree 
The num

ber of incom
ing connections 

High inw
ard connectivity to the rest of the netw

ork; sensitivity to 
inform

ation, influence (New
m

an, 2010) 
Receives change from

 m
any other elem

ents; m
ay be highly volatile or highly stable 

Outdegree 
The num

ber of outgoing connections 
High outw

ard connectivity to the rest of the netw
ork; rapid 

com
m

unication/high access to the rest of the netw
ork, highly 

infectious (New
m

an, 2010) 

Change in the given phenom
ena is felt by m

any other elem
ents; im

pact, pow
er 

Betw
eenness 

Frequency of participation in the shortest 
path betw

een tw
o other elem

ents 
M

em
ber has a high degree of control; the netw

ork is dependent on 
the m

em
ber; bottlenecking, control, influence (Freem

an, 1979) 
Phenom

ena is a gatew
ay or bottleneck for change; change strategies m

ust consider 
how

 to prevent blocking 

Closeness 
Average length of the shortest paths 
betw

een the given vertex and every other 
vertex in the graph 

High visibility to the rest of the netw
ork and inform

ation spreads 
easily from

 this m
em

ber; independence from
 the rest of the graph 

(Freem
an, 1979) 

Phenom
ena is highly pow

erful; likely to be resistant to change, and therefore a key 
indicator of success or failure 

Eigenvector 
Connectedness to other w

ell-connected 
elem

ents 
Influence of highly influential elem

ents; influence (New
m

an, 2010) 
High-im

pact phenom
ena; likely key phenom

ena to change in pursuit of a given 
strategy 

Reach 
The num

ber of elem
ents w

ithin [x] steps of 
the given elem

ent 
Quick propagation of inform

ation through the netw
ork; w

idely 
accessible (Hannem

an &
 Riddle, 2005) 

The m
ap is highly sensitive to these elem

ents 

Reach 
efficiency 

The reach divided by the degree of a given 
node 

Efficient (non-redundant) inform
ation spreading; high exposure w

ith 
lim

ited influence on the given elem
ent (Hannem

an &
 Riddle, 2005) 

Quickly and efficiently propagate change throughout the rest of the netw
ork; is not 

likely to be highly influenced by the rest of the system
 

Eccentricity 
 

The distance aw
ay of the furthest node 

M
inim

al eccentricity indicates the centre of the graph (Hannem
an &

 
Riddle, 2005; Oliva, 2004) 

Localization of outcom
e or intervention; target phenom

ena “neighbourhoods”  

Level partition 
W

hich variables are dependent on w
hich? 

Hierarchy of causal structure (Oliva, 2004) 
Elem

ents at the “bottom
” of the hierarchy are uncontrollable w

ithin the system
; 

elem
ents at the top are highly dependent on the rest of the system

 

Cycle partition 
W

hich other variables share the sam
e set 

of predecessors/successors? 
Illustrates cycle set “dom

inance” →
 sub-cycles sets m

ust be 
understood before their “parents” (but not that useful as m

ost 
elem

ents in m
odels sit in the sam

e cycle set; Oliva, 2004) 

Sub-cycle set elem
ents dictate the behaviour of supercycles  

Shortest 
Independent 
Loop Set (SILS) 

A decom
position of the cycle partition 

show
ing w

hich loops are included in w
hich 

- Illustrates a loop hierarchy 
- W

ith level partitioning, gives an ordering from
 sim

ple loops to 
com

plex loops 
Show

s isolated loop structures (Oliva, 2004) 

- Sim
ple loops are easier to experim

ent w
ith than m

ore com
plex loops 

- Inner loops w
ill influence the behaviour of their containing loops 

- Isolated structures are m
ore easily m

anipulated 
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3.2. A pilot study 

we we  The model is a CLD representing the system of education curricula change in the Canadian 
province of Newfoundland and Labrador. It can be found and interacted with online at 
https://kumu.io/systemicdesign/centrality-and-structural-analysis. The model is not overly complex, 
containing 30 elements and 49 connections between them. Nonetheless this is a sufficient 
complexity to make the model difficult to interpret at a glance. A good test of the leverage measures 
is whether the results make sense and reveal insight based on our experience with the system. 

The	study	artifact	&	materials	
The model is built and maintained on Kumu.io, a web application supporting systems mapping and 
social network analysis. Kumu.io has implemented the centrality analysis metrics discussed above 
(except for eccentricity, which remains untested in this pilot study).  

Procedure	
We first used Kumu's built in algorithms to calculate centrality values for each element for the 
metrics described above. Second, we followed the procedures detailed by Oliva (2004) to examine 
the level and cycle partitions of the model. Finally, we reviewed the resulting centrality values, level 
partitions, and cycle partitions. We present our interpretation of the results according to our 
experience with the problem domain below. 

Results	
Structural	analysis	
As suggested by Oliva (2004), the model's initial level partition was not useful. The partitioning 
resulted in two levels, of which the bottom included only five of the 30 elements in the model. In no 
particular order, they are: 

– Generational shifts in work 

– Innovation learning from outside of the public education system 

– Accessible and practical models for innovation education 

– Other calls for reform 

– Low price of oil 

Taken with zero interpretation, this analysis implies that these five phenomena are completely 
independent forces in the world. For most of the phenomena, however, the opposite is true: "Low 
price of oil", "Other calls for reform", and "Generational shifts in work" are three phenomena that 
actually have massive systems behind them, and defining those models was simply outside of the 
scope of the model—a result of boundary drawing. However, the other two phenomena both deal 
with injecting innovation learning from outside of the extant system. It makes sense that these do 
not depend on anything within the system. Their independence may make them a useful point from 
which to implement a change strategy.   
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The remaining 25 elements can be decomposed into a shortest independent loop set (SILS) 
containing 18 separate loops. Of these, the loop inclusion graph is presented below (figure 1). It 
shows that 13 of the loops are independent, sitting at the same bottom-most level. The remaining 
five loops form the core structure of the model. These loops are illustrated and labelled in figures 3 
through 6.  

 

Figure 1. The loop inclusion graph of the innovation education model. Cycle levels are indicated on the left of 
the diagram. 

The core loop of this structure is therefore loop 3—a loop describing how a poor definition of 
innovation is self-perpetuating. This loop is nested within loops 2, 4, 17, and 18, making it the most 
contained loop of the model. This is intuitive, as definitions play a major role in how an issue is 
discussed and, therefore, how policies are made. From a leverage perspective, then, influencing loop 
3 means influencing several other key feedback loops of the system.  

  

3 (4)

2 (7)

4 (8)

1 (4)5 (2) 6 (8) 7 (8) 8 (8) 9 (8) 10 (8) 11 (7) 12 (7) 13 (7) 14 (7) 15 (7) 16 (7)

17 (9)

18 (9)

Zero

One

Two

Three
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Figure 2. Loop 3: Perpetually poor 
definition of innovation 

Figure 3. Loop 2: Innovation conflation (with 
R&D) 

Figure 5. Loop 18: Driving reform 

Figure 6. Loop 17: Resource-dependent economy 

 

 

 

 

Figure 2. Loop 4: Innovation reinforces innovation 
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Centrality	analysis	
The top three phenom

ena on each of the centrality indicators is reported in table 2. A full discussion of the im
plications of these results is outside 

of the scope of this paper. For now
, w

e provide com
m

ent on a few
 observations on the results of particular m

etrics below
. 

Table 2. Ranked results of centrality analysis on phenom
ena in innovation education, reported in descending order w

ith the highest value item
s on the left. 

Values for the respective m
etric reported in parentheses. Phenom

ena have been colour-coded for ease of identifying the sam
e phenom

ena across the table. 

Degree 
Innovation education (8) 

Recognition of innovation skill deficiency (7) 
K-12 curricula reform

 for better innovation education (7) 

Indegree 
K-12 curricula reform

 for better innovation 
education (6) 

Innovation education (6) 
Recognition of innovation skill deficiency (5) 

Outdegree 
Innovation capacity (4) 

Provincial governm
ent pressure to reform

 (3), Independent actor calls for innovation education reform
 (3), Austerity lim

iting 
new

 program
 grow

th/developm
ent (3), Lack of em

phasis on innovation skills and com
petencies (3) 

Betw
eenness 

Innovation capacity (.47) 
Innovation education (.454) 

Recognition of innovation skill deficiency (.298) 

Closeness 
Lack of em

phasis on innovation skills and 
com

petencies (.359) 
Innovation capacity (.337) 

Innovation learning from
 outside the public education system

 
(.308) 

Eigenvector 
Innovation education (.121) 

Innovation capacity (.083) 
Perceived innovation gap (0.073) 

Reach 
Lack of em

phasis on innovation skills and 
com

petencies (0.367) 
Innovation capacity (.3) 

Recognition of innovation skill deficiency (0.267) 

Reach efficiency 
Innovation learning from

 outside the public 
education system

 (0.078) 
Lack of em

phasis on innovation skills and com
petencies 

(0.073) 
Low

 price of oil (0.067) 
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We proposed that high-degree elements would be important indicators of leverage—lead measures 
of a systemic intervention. Indeed, increased levels of "innovation education", "recognition of 
innovation skill deficiency", and "K-12 reform for better innovation education" would each be clear 
signs that change was taking root. Contrast these elements with other components of the system—
say, the "need for innovation skills" or the "definition of innovation skills and competencies". These 
are hand-picked examples, of course, but that the degree measure algorithmically better options is 
evidence that our proposed definition is appropriate.  

We suggested that betweenness indicates a bottleneck. Indeed, "innovation capacity" and 
"innovation education" reflect bottleneck phenomena in our experience. These phenomena 
represent our ability to actually practice and teach innovation itself. Since these concepts are 
fundamental, a change strategy will fail without addressing them. "Recognition of innovation skill 
deficiency" is third, and it also makes sense that this is a bottleneck. If we knew everything we could 
about innovation, but fail to notice that we weren't very good at doing it, we would not try to 
implement reforms to resolve the deficiency. 

Last, the eigenvector metric should highlight leverage points in the model. The results here are 
promising. "Innovation education"—the kernel of the model itself—and "innovation capacity" are 
the top two results, which are intuitive. The measure also revealed the relative importance of the 
"perceived innovation gap": whether or not society recognizes that we aren't performing as well on 
innovation as we should be. This makes sense: alarm that we are failing at innovation is likely to raise 
awareness and incite change rapidly.  

4. Discussion 

4.1. Contributions 

Leverage analysis is a powerful opportunity for systemic designers. Grafting centrality and structural 
analysis methods to systemic design is a novel way to gain insight into our wicked or continuous 
critical problems (Rittel & Webber, 1973; Ozbekhan, 1970). By reframing these techniques using the 
language of systemic design we hope to motivate more researchers and practitioners to see the 
potential of these measures for parsing complex systems. Structural analysis adds a rich 
dimensionality to these otherwise flat and inscrutable diagrams, while centrality analysis offers a 
quick way of emphasizing structurally important phenomena. Most importantly, these measures help 
systemic designers do what they are meant to do: interpret the models, with all the experience and 
domain knowledge they bring, to find strategic opportunities to make change. 

A few centrality measures seem especially important. In particular, eigenvector analysis is an 
intuitive exaptation of the concept of leverage points. It may be that the results of eigenvector 
analysis should be the first thing that systemic design teams discuss when they move towards 
strategizing solutions. Identifying potential bottlenecks with the betweenness measure also appears 
to be a powerful tool in order to ensure that potential bottlenecks are addressed by a change 
strategy. 
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The notion of "leverage measures" is a novel concept as a whole. Are there other ways in which we 
should be measuring the leverage we have on our systems? What principles may be applied in 
assessing whether a given change strategy has appropriate leverage or not? This is an exciting new 
idea that deserves further scrutiny and exploration. 

4.2. Limitations 

First, and most obviously, our proposed metrics deserve further scrutiny than our pilot project. It 
should be possible to test hypotheses on these ideas. For instance, a modeller or modelling team 
could examine a domain and develop a model, then assess it with the leverage measures. Expert 
reviewers could be asked questions (e.g., "What are the key bottlenecks to reform in this issue?") 
about the domain relating to the proposed leverage measures. After these responses are coded, the 
reviewers' suggestions could be compared with the results of leverage analysis to see if experts’ 
insights are reflected by the analysis.  

Second, the need for interpretation is ever-present. Nonetheless, we can direct what the interpreter 
interprets. Structural and centrality analysis offers an easy way to provide emphasis, changing what 
catches the systemic designer's attention.  

4.3. Further research 

Ontological	guidelines	for	mapping	and	normalization	
The way in which models are researched and designed is not necessarily standardized. Designers may 
hold different mental models about what is appropriate for a systems model, for the phenomena 
they are mapping, and for what constitutes a connection between the models. These issues may be 
alleviated with ontological guidelines or even a strict script for how the real-world problems of 
systemic design are mapped to systems models. 

Explore	additional	metrics	
As discussed earlier in this paper, many more metrics exist dealing with analyzing the structure of 
graphs. For instance, Borgatti (2005) develops some ideas around how information actually flows in 
social networks. These ideas may apply to the flows of change between phenomena in systems. Xie, 
Szymanski, and Liu (2011) profile a set of community detection algorithms used to detect the 
divisions of social networks into separate social groups. These concepts may relate to new ways to 
structure and decompose systemic phenomena. Finally, Schoenenberger, Schmid, and Schwaninger 
(2015) propose a methodology to algorithmically detect different systems archetypes based on the 
structure of CLDs. This relates directly to the objectives of the current research and should be 
integrated into the leverage measures framework. 

Weighted	metrics	and	algorithms	to	implement	them	
It is possible to combine centrality measures. For instance, you can use the Kumu.io algorithms to 
calculate reach efficiency weighted by eigenvector values. If combined metrics could be clarified and 
developed with respect to the leverage measures framework, it may be the most powerful way to 
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immediately calculate clear leverage points from a given model. (E.g., eigenvector-weighted reach 
efficient phenomena may be high-influence high-efficiency intervention points.) 

Linking	methods	
The formal relations and structures emphasized by the methods presented in this paper might be 
even more useful when embedded in other systemic design methods, such as synthesis maps or 
Gigamaps (Sevaldson, 2011). Centrality and structural analysis could also find utility in structured 
dialogic design, where pairwise voting mechanics are already used, providing a semi-quantitative 
approach to engage stakeholders in modelling complex problems (Jones, 2008). 

Systems	dynamics	vs.	systems	thinking:	from	dichotomy	to	spectrum?	
In the introduction, we framed differences between system dynamics and systems thinking as a 
substantial divide. It may be that these tools can help bridge the gap between the hard, quantitative 
approaches of systems dynamics and the soft, messy problems of systems thinking. If this is the case, 
the divide doesn't exist at all—rather work in these two disciplines happens along a spectrum. 
Choosing the appropriate place on the spectrum to investigate a given problem then becomes a key 
decision in the systemic design process. This deserves further thought. 

5. Conclusion 
This paper has served three objectives: to unite different semi-quantitative approaches to analyzing 
systems, to contextualize these approaches in the discipline of systemic design, and to relate the use 
of these semi-quantitative methods to the notion of leverage points. Simply by discussing the 
different aspects structural analysis of systems with respect to systemic design, we hope to have 
achieved the first and second objectives. By translating different measures from these semi-
quantitative approaches into a list of leverage measures, we believe we have achieved the third. 
Extensive work remains both to critique this work and to extend it. The potential for augmenting the 
work of systemic design is nonetheless enormous. 
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