

OCAD University Open Research Repository

2018

Continuous improvement: How systems design can benefit the data-driven design community

Lomas, James, Patel, Nirmal and Forlizzi, Jodi

Suggested citation:

Lomas, James, Patel, Nirmal and Forlizzi, Jodi (2018) Continuous improvement: How systems design can benefit the data-driven design community. In: Proceedings of RSD7, Relating Systems Thinking and Design 7, 23-26 Oct 2018, Turin, Italy. Available at http://openresearch.ocadu.ca/id/eprint/2704/

Open Research is a publicly accessible, curated repository for the preservation and dissemination of scholarly and creative output of the OCAD University community. Material in Open Research is open access and made available via the consent of the author and/or rights holder on a non-exclusive basis.

The OCAD University Library is committed to accessibility as outlined in the <u>Ontario Human Rights Code</u> and the <u>Accessibility for Ontarians with Disabilities Act (AODA)</u> and is working to improve accessibility of the Open Research Repository collection. If you require an accessible version of a repository item contact us at <u>repository@ocadu.ca</u>.

Designing for Continuous Improvement in K12

How systems design can help data-driven design in complex-technical systems

Data-Driven Continuous Improvement in K12

"Data-Driven Decision-Making"

Slavin et al, 2013

- 1. Gather assessment data
- 2. Analyze data to identify problems and their causes
- 3. Select actions to address those problems

Select the Right action

Slavin, R. E., Cheung, A., Holmes, G., Madden, N. A., & Chamberlain, A. (2013). Effects of a data-driven district reform model on state assessment outcomes. *American Educational Research Journal*, *50*(2), 371-396.

Data-Driven Design in K12 classrooms

What is Data-Driven Design?

- 1. Define "the right" goals (or needs).
- 2. Define "the right" measures of those goals.
- 3. Take actions to modify the current system when goals aren't met.

Software Model of Data-Driven Continuous Improvement

How Might We Design Systems to Support Data-Driven Continuous Improvement?

Simple Heuristic Advice:

just make it easier to measure and modify

Measure Outcomes

"What are the areas of need?"

Modify Designs

"What can we do about it?"

Online Product Experiments (A/B Tests): A Method for Continuous Improvement

Over 10,000/day run by Google, Facebook, Amazon, etc

Continuous Improvement in K12

"Data-Driven Decision-Making"

Slavin et al, 2013

- 1. Gather assessment data
- 2. Analyze data to identify problems and their causes
- 3. Select actions to address those problems

outcomes. American Educational Research Journal, 50(2), 371-396.

Why is there desire for "Data-Driven Decision Making" (DDDM) in K12?

Very few interventions have been found to be effective in addressing the poverty achievement gap.

In a review of 196 randomised field experiments, Data-Driven Decision Making was found to be one of the most effective approaches for improving high-poverty schools (Fryer, 2017).

Fryer Jr, R. G. (2017). The production of human capital in developed countries: Evidence from 196 randomized field experimentsa. In Handbook of Economic Field Experiments(Vol. 2, pp. 95-322). North-Holland.

Van Geel, M., Keuning, T., Visscher, A. J., & Fox, J. P. (2016). Assessing the effects of a school-wide data-based decision-making intervention on student achievement growth in primary schools. *American Educational Research Journal*, 53(2), 360-394.

DDDM is not "disruptive" or radical change.

DDDM is all about small incremental improvements... ideal for complex social-technical systems

K12 Education is a Complex-Technical System

K12 Education is a Complex-Technical System

The Modern Classroom

Computer Interactions

Text Interactions

Small-Group Interactions

"Professional Learning Communities"

Administrative Interactions

- Curriculum
 Coordinators
- Schools
- Districts
- State Admin

Computer Interactions

Teacher Interactions

Government Policy

LearningStandards

Text Interactions

Small-Group Interactions

Administrative Interactions

Education Companies

- Textbooks
- Assessments
- Paper & Digital Products

K12 Education is a Complex-Technical System Opportunities from Systems Design?

Systems Design

Role of data in systems design

- Systems use data as feedback to guide action.
- Measurements provide data to inform systems whether goals have been achieved.
- Cybernetic systems?

Mastery Learning

as a cybernetic system

Closed System

TEST, OPERATE, TEST, EXIT

Miller et al, 1960

Single and Double Loop Learning

Argyris 1990

Data-Driven Design in K12 classrooms

Case #1:

Supporting Data-Driven
Improvement in Educational
Product Companies

Common Barriers to DDDM

And some root causes

"Backwards Design" Methodology

(cite Understanding by Design)

What are the educational goals?

Goals

How do we assess we've achieved our goals successfully?

Assessments

What instructional designs might improve the assessments?

Instruction

Key Question #1:

Is the system capable of measuring success?

Can the system measure whether it is achieving its goals?

"If we want to report on student mastery for topic A, we need to collect valid test data on topic A"

Case #2:

Development plans for a teacher-facing recommendation system

Mapping the System to Reinforcement Learning

- What is the space of possible observations? (what we measure?)
- What is the space of possible actions? (what can we do?)
- What is the reward metric? (how do we quantify our goals?)

Mapping Classrooms to Reinforcement Learning

- 1. Assessment Data Dashboard (Observation)
- 2. Digital Assignment Possibilities (Action Space)
- 3. Recommendation Success (Rewards)

Key Question #2:

Is the action space sufficiently defined?

The right data might be gathered and analysed appropriately ...but is there a defined action in response?

NEED methods for scaling-up system learning from rich human decision-making

Case #3:

Automated Machine-Learning
Optimization of an Educational
Game

An Al system for design optimization successfully increased game engagement...

...but then spun out of control!

Lomas, D., Forlizzi, J., Poonwala, N., Patel, N., Shodhan, S., Patel, K., Koedinger, K., Brunskill, E. (2016) Interaction Design as a Multi-Armed Bandit Problem. *ACM CHI*

Multi-Armed Bandit Problem

Goal is to maximize payout from row of slot machines with unknown rates of reward (some machines pay out more)

Need to balance exploration with exploitation

Interface design as a multi-armed bandit problem...

Lomas, J. D., Forlizzi, J., Poonwala, N., Patel, N., Shodhan, S., Patel, K., Koedinger, Brunskill, E. (2016). Interface Design Optimization as a Multi-Armed Bandit Problem. In CHI'16.

Instructional Design of "Battleship Numberline"

Ship targets
Type to name a fraction

Submarine targets
Click to locate a fraction

Target Size

Design Factors

Target Type: Ship or Sub

Target Size: Small to large targets

Time Limits: Small to large time limits

Item Sets: The fractions to be estimated

Tickmarks: Scaffolds for estimating

Sequencing: Algorithms for presentation

NE ADV
SLEPS LEPT

TOTAL BORRESSERIES

TOTAL B

Experiment 1: Assigned 10,832 players to 3 simultaneous experiments, each testing 6 different design factors (2x3: target type and target size)

Target Type

Success!

Automatic optimization algorithms produced more engagement

Bandit experiments produce greater total engagement

Meta Experiment 1

Worst Design Ship 97

Best DesignShip 90

Meta Experiment 2

Introduced ridiculously large "Bad Designs"

The Data-Experience Dialectic Data and qualitative insights must be integrated

With 10,000 subjects a day, we could run thousands of experiments each year

But setting up, analyzing and acting upon experiments is hard.

How might AI get involved? Could we partially automate design optimization and scientific experimentation?

Key Question #3:

Is there a human-in-the-loop to keep alignment?

If continuous improvement metrics are not aligned to goals and values, data-driven improvement (teams or Al) will produce unintended consequences

NEED feedback loops about suitability of success metrics

Conclusions

Takeaways

- From Designing Artificial Intelligence to Designing Intelligent Systems
 - Collaboration between teams and algorithms

(not just for AI but for products)

A Definition of Intelligence used in Al

"Intelligence measures an agent's ability to achieve goals in a wide range of environments."

—Legg & Hutter, 2007

"an individual's intelligence is related to their ability to succeed..."

- Robert Sternberg

What can go wrong?

- Poor goals (misalignment with values)
- Poor metrics (misalignment with goals)
- Poor actions responding to data
- Misleading data and misreading data
- Conflicting interests in stakeholders

Unintended consequences!

Accountability can create perverse incentives e.g. schools encourage low-performing students to drop out or to cheat (Schildkamp et al, 2012).

How can system designers help build the human into the loop?

- UI for User Goal Setting
- System mapping & communicating future systems
- Processes to Negotiate Metrics for Success

(not just for AI but for products)

Figure 6.2 Elementary control system

Reinforcement Learning

Al Definition of Intelligence

"Intelligence measures an agent's ability to achieve goals in a wide range of environments."

2nd Order: Learning System

Closed System

