2013

System design for sustainable energy systems in emerging and low-income contexts

Vezzoli, Carlo

Suggested citation:

System design for sustainable energy for all

Carlo Vezzolia and Emanuela Delfinob

a Promoter and international coordinator of

\textit{LeNS, the Learning Network on Sustainability (funded by EU Asia-Link programm)}

\textit{and of}

\textit{LeNSes, the Learning Network on Sustainable energy systems (funded by EU Edulink programm)}

a Head of Design and system Innovation for Sustainability (DIS)

b Member of Design and system Innovation for Sustainability (DIS)

Design department

Politecnico di Milano

Milan, Italy

\texttt{carlo.vezzoli@polimi.it}

\texttt{emanuela.delfino@mail.polimi.it}

\texttt{www.lens.polimi.it}

\texttt{www.lenses.polimi.it}

\texttt{sunrideproject.wordpress.com}

Abstract

This paper presents Product-Service System Design for Sustainability focused on energy systems for all - shortly system design for sustainable energy system for all - as a promising approach to tackle in low and middle-income contexts the socio-ethical dimension of sustainability together with the environmental and the economic ones.

Firstly two understandings are presented: 1) Distributed Renewable Energy (DRE): key leverage for a sustainable development and; 2) Product-Service System (PSS): promising model sustainable development.

Based on those assumptions two interlinked working hypothesis are presented: 1) S.PSS applied to DRE: sustainable opportunities in low/middle income contexts; 2) system design for sustainable energy for all: a new challenging role for design.

Secondly the recently awarded LeNSes (Learning Network on Sustainable energy system) EU project (bioregional with Africa) is introduced in terms of its aims and approaches to deepen the knowledge-base and the know-how od System design for Sustainability, i.e. merging the knowledge-base and know-how (e.g. the Method for System Design for Sustainability (MSDS)) with those of Distributed Renewable Energy (DRE) systems design, implementation and management.

Lastly it is described a first design and pilot implementation of a DRE-based S.PSS: the Sunride sustainable mobility system in Cape Town.
1. **Distributed Renewable Energy (DRE): key leverage for a sustainable development**

1.1 **Sustainable development is not possible without sustainable energy for all**

Energy is the world’s largest industrial sector, whose output is an essential input to almost every good and service provided in the current economy. Yet 1.3 billion people—one in five globally—lack electricity to light their homes or conduct business. Twice that number—nearly 40% of the world’s population—rely on wood, coal, charcoal, or animal waste to cook their food—breathing in toxic smoke that causes lung disease and kills nearly two million people a year, most of them women and children (Sustainable Energy for All, 2012). Without access to modern energy, it is not possible to achieve the Millennium Development Goals¹, the eight-point global agenda adopted by the United Nations in 2000—whether reducing poverty, improving women’s and children’s health, or broadening the reach of education (Sustainable Energy for All 2012).

Access to energy can contribute to reduce poverty, access, self-sufficiency, power (and interdependency) to individuals and local communities, resources democratisation and inequality reduction (Rifkin 2011; Vezzoli 2010). And the opportunity to overcome the development divide strongly depends on the availability of energy. Energy services have a profound effect on productivity, health, education, climate change, food and water security, and communication services. (Colombo et al. 2013).

In other words Sustainable development is not possible without sustainable energy for all.

The importance of energy for sustainable development has been recognized within the international arena, i.e. the United Nations General Assembly has designated, by its resolution 65/151, the year 2012 as the International Year of Sustainable Energy for All; and in 2012 the Rio+20 UN Conference held in Rio de Janeiro contributed as well to recognize that energy is a key driver for sustainable development.

1.2 **Distributed Renewable Energy (DRE): key leverage for a sustainable development**

Even though energy is the world’s largest industrial sector, by many authors (Colombo et al. 2013; Rifkin 2011) the dominant energy system it is far from being the right one to take energy in a sustainable way to all. In other terms by many authors agreed that a paradigm shift is needed to lead to a new era driven more by decentralized or distributed, than centralized energy generation systems; and based on renewable rather than non-renewable resources (e.g. fossil fuels).

Said this it is at the same time clear that a paradigm shift is needed to lead to a new era driven more by people than by the market, more decentralized than centralized, more democratic than monopolistic, more inclusive than exclusive (Rifkin 2011; Vezzoli 2010; Colombo et al. 2013).

¹ The eight Millennium Development Goals (MDGs) – which range from halving extreme poverty rates to halting the spread of HIV/AIDS and providing universal primary education, all by the target date of 2015 – form a blueprint agreed to by all the world’s countries and all the world’s leading development institutions. http://www.un.org/millenniumgoals.
A Distributed Renewable Energy (DRE) generation is characterized by:
- renewable resources: sun, wind, water, biomass, geothermal energy
- small-scale generation plants
- generation at/near the point of use
- users is the producer: individuals, small businesses and/or communities
- if connected with each other to synergetically share the energy surplus, they become Renewable Local Energy Network; eventually connected with nearby similar Network.

Finally, a Distributed Renewable Energy (DRE) generation could be defined as:
A small-scale generation plants sourced by renewable energy resources (such as sun, wind, water, biomass and geothermal energy), at or near the point of use, where the users is the producer, whether an individuals, a small businesses and/or a local community and if a small-scale generation plants is connected with each other (to synergetically share the energy surplus), they become Renewable Local Energy Network; eventually connected with nearby similar Network.

Several authors (Colombo et al., 2013; Rifkin, 2002 and 2010; Johansenn, 2005; Vezzoli, 2010; Sustainable Energy for All 2011) have observed that the transition from centralized and non-renewable fossil fuel resources (oil, coal, etc.) to Renewable Distributed Energies (DRE) play a key role in the transition towards a sustainable development, as far as they allow the use of local resources while preserving the environment, creating employment, promoting income generation, capacity building and local empowerment.

2 Adapted by the author from Wikipedia definitions of distributed energy generation and micro generation.
To clarify the above assumptions let’s now look at the fossil resources model from an economic and socio-ethical point of view. Resources from fossil fuels – due to their localization and the complexity of extraction and transformation processes – have led to a series of highly centralized production and distribution infrastructures. The consequence has been a widespread centralization of the economic infrastructure which has resulted in reduced opportunities for access to resources, above all to energy, and particularly electricity. This is a key factor in perpetuating poverty in the world. It is therefore said that the enlarging rift between rich and poor can to a large extent be attributed to the very nature of the fossil fuel energy regime (Rifkin, 2002 and 2011). Without access to resources and to energy in particular, individuals have little control over their own destiny. Only by freeing themselves from oil, coal and natural gas imports, can low-income and middle-income contexts emerge, improving the economic conditions and quality of life of their populations.

From a strictly environmental point of view, using fossil resources (oil, coals, etc.) determines most of the carbon dioxide emissions that have their fair share in causing global warming. There are also many widely-known problems and environmental risks associated with the various extraction and transformation processes, and the transport of these resources (Vezzoli 2010).

As an alternative to fossil fuel, the use of locally-based - distributed and eventually network-structured - renewable resources, such as sun, wind, water, biomass and geothermal energy, presents indubitable environmental advantages, due to their reduced greenhouse effect (and its impact), inexhaustibility and lower environmental cost compared to the various processes of extraction, transformation and distribution when using fossil fuels.

So forth the expansive usage of distributed generation of renewable resources could lead to an extensive redistribution of power towards many single individuals, which is necessary to establish conditions that would allow the Earth’s riches to be shared more fairly. This is the essence of a policy for bottom-up re-globalization. Briefly, let’s see why.

The renewable resources can be used locally through relatively simple processes. The sun as other renewable resources are inexhaustible and at least sun present everywhere, though in varying intensity (curiously, there is more sun in the so-called “Global South”). Technology for these renewable resources has still not been developed in a significant way, but already today the installation and management of photovoltaic (sun) is infinitely less complex than plant for oil wells and refineries. They are therefore also installable and manageable by small scale economic entities, even by a single residential complex or single individuals.

If adequately exploited, renewable resources would enable every human being to have more power and move towards a democratic regime of resource management. These sources would allow micro-plants to be set up close to the end-user, who would no longer be only a consumer but also producer of the energy he uses. Autonomous photovoltaic panels and combustion cells could supply electricity rapidly and at a favourable cost. When a sufficient number of such micro-plants have been installed (whether purchased or managed), they could be connected together into micro energy-grids, and therefore into a constantly expanding (potentially global) energy grid. Individuals, residential complexes and local communities could in this way share and exchange energy, achieving self-sufficiency and consequently increased power, in a framework of greater interdependence. Ultimately, they could challenge the traditional centralized energy generating plants (born and developed during the age of fossil fuels), and escape the grip of the huge,

3 For example, many have observed (Stiglitz, 2002) that the rise in oil prices during the seventies and eighties was the main cause of debt increase in the third world. These nations were forced into debt, for billions of Euro, with international monetary institutions and with banks, to guarantee oil imports. In many of the world’s poorest countries, the cost of paying interest and settling debts is today greater than the amount needed to provide essential services for their own populations.
powerful, energy and electricity companies, causing a radical change in important flows of power: no longer from top downwards, but from bottom upwards.

In short, such a decentralized infrastructure supplied by renewable sources, usually referred to as Distributed Energy Generation (DEG), or Distributed Renewable Energy (DRE), on the one hand would reduce environmental impact, and on the other could facilitate a democratization of resources and energy, enabling individuals, communities and nations to reclaim their independence while accepting the responsibility that derives from their reciprocal interdependence (self-sufficiency and interdependence). Giving access and power to local communities also contributes to enhancing the positive aspects of humanity’s cultural plurality, where local cultural forms should aspire less and less to being possessions to defend, and more and more to being opportunities for positive cross-fertilization towards a general improvement in the conditions of life on earth.

Renewable energy sources have the characteristics that lead to low environmental impact, decentralized and democratic production systems.

Finally, Renewable Distributed Energies (DRE) are increasingly seen (Colombo et al. 2013) as a vital catalyst to achieve universal access to energy and a wider social and economic development by enabling education, health and sustainable agriculture, by creating green jobs and by promoting equity. In other terms the dissemination of distributed generation based on renewable energies represents an economically viable and effective way to promote sustainable development in low-income and middle-income contexts.

Furthermore, the experience gained in developing countries could also contribute to the paradigm shift needed in the energy sector at global level (Colombo et al. 2013).

One of the most committed and known researcher on this topic is Jeremy Rifkin, who is talking about the Third Industrial Revolution (Rifkin 2010). Rifkin the core idea is that of the creation of a renewable energy regime, loaded by buildings, partially stored in the form of hydrogen, distributed via an energy internet—a smart intergrid—and connected to plug in zero emission transport”. Rifkin highlights 5 pillars for this transition:

1. shifting to renewable energy (solar, wind, hydro, geothermal, ocean waves and biomass)
2. buildings as power plants
3. deploying hydrogen and other storage technologies in every building and throughout the infrastructure to store intermittent energies
4. using internet technology to transform the power grid of every continent into an energy sharing intergrid that acts just like the internet
5. transitioning the transport fleet to electric, plug in and fuel cell vehicles that can buy and sell electricity on a smart continental interactive power grid.

2. Product-Service System (PSS): a promising model for sustainable development

2.1 Product-Service System: eco-efficiency opportunities for industrialized contexts

Over the last few years some design research centres, starting with a stringent interpretation of environmental sustainability (that requires a systemic discontinuity, i.e. radical innovation in the production and consumption patterns), have reset part of the debate on design for sustainability starting from system innovation. According to most researchers a significant ambit in which to act promote radical changes for sustainable consumption seems to be the widening possibilities for innovation beyond the product. More specifically, this entails innovation of the system, i.e. an integrated mix of products and services that
together are able to satisfy a particular demand of the customer (Goedkoop, van Halen, Riele, Rommes, 1999; Brezet, 2001; Charter, Tischner, 2001; Manzini, Vezzoli, 2001; Bijma, Stuts, Silvester, 2001). Commonly referred to in this context as a Product-Service System (PSS), Mont (Mont O., 2002) defines it as “a system of products, services, network of actors and supporting infrastructure that continuously strives to be competitive, satisfy customer needs and have a lower impact than traditional business models”. More recently, in the United Nations Environment Program publication (UNEP, Tischner, Vezzoli, 2009), a PSS is defined as “a system of products and services (and related infrastructure) which are jointly capable of fulfilling client needs or demands more efficiently and with higher value for both companies and customers than purely product based solutions”. The following case exemplify what has been written.

Pay Per Page Green—Ricoh
Ricoh offers a package deal (Pay per Page Green) and installs, maintains and collects at the end-of-life the printers and photocopiers (not owned by the customer); the customer pays for the number of delivered pages and copies. The innovative interaction between the company and the client provides the company’s economic interest to provide (and design) long-lasting, re-usable and recyclable photocopiers. Components are tested and functional parts are re-manufactured or directly re-used in a new photocopier. Damaged components are directed to material recycling. Ricoh products are designed to allow component compatibility between different models and to facilitate the whole processes of re-using or re-manufacturing.

In fact, it is a shared opinion that “PSS could decouple the creation of value from consumption of materials and energy and thus significantly reduce the life-cycle environmental load of current product systems”. It is a shared opinion that these innovations could lead “to a system minimization of resources, as a consequence of innovative stakeholder interactions and related converging economic interests” (UNEP, 2002). Thus eco-efficient system innovation derives from a new convergence of interest between the different stakeholders: innovation not only at a product (or semi-finished) level, but above all as new forms of interaction/partnership between different stakeholders, belonging to a particular value production system. A value production system includes the value chains of a firm's supplier (and their suppliers all the way back), the firm itself, the firm's distribution channels, and the firm's buyers (and is presumably extended to the buyers of their products, and so on) (Porter, 2006).

The characteristics of a Product-Service System innovation are the following (Vezzoli, 2010):
- They are rooted in a satisfaction-based economic model, i.e. each offer is developed/designed and delivered in relation to a particular customer “satisfaction” (unit of satisfaction);
- They are stakeholder interaction-based innovations, i.e. they are radical innovations, not so much in technological terms as in new interactions/partnerships between the stakeholders of a particular value/satisfaction production system;
- They have an intrinsic eco-efficiency potential, i.e. they are innovations in which it is the company/companies’ economic and competitive interest that may lead to a reduction in environmental impact (system eco-efficiency: decoupling the creation of value from resources consumption).

2.2 PSS a promising approach for sustainable innovations in emerging and low-income contexts
Most of the research efforts investigating PSS have been focused mainly on the environmental and economic dimensions of sustainability and have mainly considered industrialized contexts. Nevertheless, an emerging hypothesis we came upon has proposed that such innovations are also favourable for emerging or low-income contexts and help to tackle the socio-ethical dimension of sustainability together with the
environmental (and economical) one, i.e. coupling eco-efficiency with social equity, cohesion and inclusion. These issues are discussed in the following paragraph.

In year 2000 the United Nations Environment Program (UNEP) set up a group of international researchers to both disseminate world-wide the concept of Product-Service Systems innovation, and start exploring new PSS potentialities, which can be summed up in the following queries.

Is PSS also applicable in emerging and low-income contexts?

This question arises simply because the development of Sustainable Product-Service Systems, studied, said and achieved thus far did not refer to the socio-ethical dimension of sustainability nor to emerging and low-income contexts (which are by statute within the concern of the United Nation Environment Program). This question the forerunner of another.

(If the answer to the first is affirmative) can a PSS approach favour social equity, cohesion and inclusion within these contexts together with eco-efficiency?

The response to the former two questions, given by the international group of experts engaged by UNEP, has been the following research working hypothesis (UNEP, 2002; UNEP, 2009):

“**PSS may act as business opportunities to facilitate the process of social-economic development in emerging and low-income contexts - by jumping over or by-passing the stage of individual consumption/ownership of mass produced goods - towards a “satisfaction-based” and low resources intensive advanced service-economy”**.

The following case exemplify what has been written.

The Virtual Station (offices), based in Fortaleza, Brazil, supply a full range of products, infrastructure (owned by virtual station) and services for a complete office. clients only pay for the periods of use; spaces are equipped with computers, printers, scanners, access to internet, TV, copiers etc.; reception, personalised phone answer, answering and remittance of fax reception/transmits. it is environmentally sustainable because it uses the solar energy + it is socioethically sustainable because give to poor people access to useful services + it is economically sustainable because is a business for TSSFA company.

The following arguments can be highlighted in support of this hypothesis that Product-Service System innovation as an approach applicable even in emerging and low-income contexts (UNEP, 2002)5.

First of all, if PSS are eco-efficient at system level it means that they may represent opportunities, for a context with fewer economic possibilities, to respond with a lower overall costs (more easily) to unsatisfied social demands.

Secondly, PSS offers are more focused on the context of use, because they do not only sell products, but they open relationships with the end user. For this reason, an increased offer in these contexts, should trigger a greater involvement of (more competent) local, rather than global, stakeholders; thus fostering and facilitating the reinforcement and prosperity of the local economy.

Furthermore, since PSS are more labor/relationship intensive, they can also lead to an increase in local employment and a consequent dissemination of skills.

4 The work involved a group of researchers (including the author) from industrialized, emerging and low-income countries; it was set up in 2000 and ended in 2002 presenting the main achievements within the publication UNEP, 2002. *Product-Service System. Opportunities for Sustainable Solutions.*

5 This hypothesis has also been examined in a series of case studies, collected by the group engaged by the UNEP.
Finally, since the development of PSS is based on the building of system relationships and partnerships, they are coherent with the development of network enterprises on a local basis for a bottom-up re-globalization process, i.e. Distributed Economies (DE).

3. Product-Service System design for Sustainability: an emerging role for design

In the last two paragraphs we take the reasoning to the implication for design. In this first one by recalling the definition (of the role) of Product-Service System Design for sustainability, and then the MSDS method and tool as elaborated within the EU funded LeNS project.

In the next paragraph by formulating the design research working hypothesis of adjusting it to DRE-powered customer satisfaction (unit).

3.1 Product-Service System Design for Sustainability: an emerging role

Let us start by proposing the definition of Product-Service System Design for Sustainability as emerged from the LeNS EU funded project (Vezzoli et al. 2014, to be published):

the design of the system of products and services that are together able to fulfil a particular customer demand (deliver a “unit of satisfaction”) based on the design of innovative interactions, of the stakeholders (directly and indirectly linked to that “satisfaction” system) where the economic and competitive interest of the providers continuously seeks after both environmentally and socio-ethically beneficial new solutions.

In relation to the characteristics of a PSS innovation described in the previous chapter, the approaches and skills for system design for sustainability could be articulated as follows (Vezzoli et al. 2014, to be published):

- “satisfaction-system” approach: design a particular demand of satisfaction (satisfaction unit) and the mix of products and services fulfilling it
- “stakeholder configuration” approach: design the interactions of the stakeholders of a particular satisfaction system
- “PSS sustainability” approach: design the interactions of the stakeholders (offer model) leading them for economic and/or competitive reasons towards those innovations that will improve social equity, cohesion and inclusion as well as reduce the environmental impact.

3.2 The Method for System Design for Sustainability (MSDS): the LeNS approach

Few methods and tools have recently been developed to support the aforementioned System Design for Sustainability approaches. Among those the MSDS, Method for System Design for Sustainability elaborated within the MEPSS project (EU 5th FP Growth) integrated with outcomes form the HiCS project (EU 5th FP Growth) and refined within the LeNS project EU Asia-Link funded project (2007-2010); in particular by the Design and system Innovation for Sustainability (DIS) research group of the Design department of the Politecnico di Milano (project coordinator).

The Method for System Design for Sustainability (MSDS) method aims to support system innovation design and to orient it towards sustainability. It is conceived for designers working for or within a company but also for public institutions and NGOs. It can be used by an individual designer or by a wider design team. In all cases special attention has been paid to facilitating co-designing procedures both within the company itself (between people from different disciplinary backgrounds) and outside, bringing different stakeholders and end users into play.
The MSDS method has been used and refined in a series of company consultancy, with Tetrapak company and Kone company and recently in a process of participated design process with the TANGO (Towards a new Intergenerational openness) EU funded project (Culture program). A set of videos for the four sustainable Product-Service System developed for suburban districts of Milan are visible at the following web site: www.designtango.eu.

The MSDS method, though, modular and flexible in order to be adapted to the specific needs of the designers/companies and to different context’s conditions is organised in the following phases:

- strategic analysis
- exploring opportunities;
- designing system concepts;
- designing system details;
- communication.

The table below shows the MSDS aims and processes related the above mentioned phases.

<table>
<thead>
<tr>
<th>MSDS method</th>
<th>Phases</th>
<th>Aim</th>
<th>Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic Analysis</td>
<td>To obtain the information necessary to facilitate the generation of sustainable ideas</td>
<td>Analyse project proposers and outline the intervention context</td>
<td>Analyse the context of reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analyse the carrying structure of the system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analyse best practices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Determine priorities for the design intervention in view of sustainability</td>
</tr>
<tr>
<td>Exploring opportunities</td>
<td>To make a “catalogue” of promising strategic possibilities available, and/or a sustainability design-orienting scenario</td>
<td>Generate ideas orientated towards sustainability</td>
<td>Outline a sustainability oriented design scenario (visions, clusters and individual ideas orientated towards sustainability)</td>
</tr>
<tr>
<td>Designing system concepts</td>
<td>To determine one or more system concepts oriented towards sustainability</td>
<td>Select clusters and single ideas</td>
<td></td>
</tr>
<tr>
<td>Design (and engineering) a system</td>
<td>To develop the most promising system concept(s) into the detailed version necessary to its/their implementation</td>
<td>Develop system concepts (consisting of one or more product and service mixes that characterize the offer; the relative interaction system between the actors involved; potential environmental, socio-ethical and economic improvements)</td>
<td>Environmental, socio-ethical and economic appraisal</td>
</tr>
<tr>
<td>Communication</td>
<td>Draw up documentation to communicate the general, and above all sustainable, characteristics of the system</td>
<td>Draw up documentation in various formats</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1 Overall scheme of the MSDS phases, aims and processes, partly adopted by the TANGO Milan design project.

The main tools of MSDS method are available for free on the LeNS web site: www.lens.polimi.it tool section.

The MSDS main design tools are as follow.

The **Sustainability Design-Orienting** (SDO) toolkit that aims at orientating the system design process towards sustainable solutions (environmental, socio-ethical, economic).

![Two snapshots of the Sustainability Design-Orienting toolkit](image)

Fig. 3. Two snapshots of the Sustainability Design-Orienting toolkit

The **Sustainability interaction story-spot** that aims at visualising (only) key interaction in relation to criteria of sustainability: environmental, socio-ethical, economic. Could be animated.

![Example of the sustainability interaction story-spot](image)

Fig. 4. Example of the sustainability interaction story-spot

The **system map** that aims at visualising (design and co-design) the configuration of the system, describing actors involved and their interactions.
The interaction table and story-board that aims at visualising (design and co-design) the functioning of the system in time: the narratives (stories) of the front-desk (with the clients) and back-stage interactions between other stakeholders. The interaction story-board could be animated.

The satisfaction offering diagram that aims at visualising (design and co-design) the satisfaction offered by the system, and how this is delivered to the user/customer.

The stakeholders motivation matrix that aims at visualising (identifying) the motivations that actors have in being involved in the system.

4.1 Product-Service System: sustainable opportunities even in the energy sector

In the energy sector cases of sustainable PSS based on renewable energy are particularly presents and promising as it could be seen with the following examples.

For what concern industrialized contexts the following example of a S.PSS based on DRE could be described.

The ‘solar heat service’, AMG, Palermo, Italy

The ‘solar heat service’ is a full-service providing a final result, consisting in ‘selling’ hot water as a finished product. Hot water is produced by new equipment that combines solar energy and methane, with economic and energy savings. Hot water is measured by means of a specific heat meter and the whole system is monitored, in order both to control in real time how the system works and also to apply the Guarantee of Solar Results. AMG has tested this service in a Tennis Club in Palermo city (Italy), providing hot water for the dressing rooms. The innovative feature of this Product-Service system is that AMG will not invoice the client for the methane consumed to obtain hot water, but rather, hot water is sold as an entire service. With AMG the consumer pays to receive a comprehensive service covering installation, thermal-energy meters and transportation of methane to the boilers. With equipment maintenance provided as well, the customer is buying a ‘final result’.

Billing is by unit of service and not per unit of consumed resources, the company becomes motivated to innovate in order to minimize the energy consumed in use: the less methane consumed (the higher the use of solar energy and the greater the efficiency of the system) the higher the income for AMG.

For what concern low-income context the following example of a S.PSS based on DRE could be mentioned.

Distributed Solar Energy and electrical devices as an all-inclusive package, Brazil

Fabio Rosa founded both a for-profit corporation, Agroelectric System of Appropriate Technology (STA) and a not-for profit organization, the Institute for Development of Natural Energy and Sustainability (IDEAAS). TSSFA developed a basic photovoltaic solar home system and in 2001, Rosa began exploring a new business model to provide Brazil’s rural people with what they needed: energy services, not just solar energy. To that end TSSFA developed a leasing structure whereby customers pay a monthly fee for the use of cost-effective solar energy packages. TSSFA customers sign a three-year service contract but can end the contract at any
time by paying the cost of un-installation. Solar home kits, as TSSFA calls them, include the hardware needed to generate energy, while also providing the installation service and products that use the electricity generated by the solar home system, such as lighting and electrical outlets. All of the tangible inputs are owned by STA and only the service provided by these materials are leased to customers. It is environmentally sustainable because it uses the solar energy; it is socioethically sustainable because give to poor people access to useful services; it is economically sustainable because is a business for TSSFA company.

4.2. S.PSS applied to DRE: sustainable opportunities in low/middle income (all) contexts: a research working hypothesis (I)

In the previous paragraphs we discussed that aiming at diffusing a sustainable development throughout sustainable energy for all (in middle and low-income contexts) it is worth considering both Distributed Renewable Energy (DRE) and Sustainable Product-Service System (PSS) applied to energy-powered systems.

In this paragraph, it is proposed to couple (in a differentiated way) the energy-powered S.PSS to the DRE to reach challenging PSS sustainable model.

As far as both the models, as well as their combination, are win-win strategies since they can potentially couple multiple sustainable benefits: economic (reduced cost of energy, due to increased resiliency and reliability), environmental (efficiency gains, reduced emissions), and socio-ethical (democratization of access to energy, increased participation and independence of local people).

In other terms, the following research working hypothesis could be formulated (LeNSes EU project 2013):

“A S.PSS approach may act as a business opportunity to facilitate the diffusion of DRE based value production system (satisfaction system) in low and middle-income contexts, hence a sustainable development characterized by locally-based and network-structured enterprises and initiatives, for a sustainable re-globalization process aiming at democratizing access to resources, goods and services.”

5. System Design for Sustainable energy (for all): a design research working hypothesis for the LeNSes EU project

5.1 System Design for Sustainable energy (for all): a design research working hypothesis (II)

The above described role for system design for sustainability could be adapted to formulate a research working hypothesis on a new challenging role focused on “unit of satisfaction” powered by a sustainable, distributed and renewable energy (LeNSes, 2013).

System design for sustainable energy (for all):
the design of the system of products and services for an on-site Distributed Renewable Energy (DRE) generation able to fulfill the customer demand of energy, and based on an innovative interactions of the stakeholders (directly and indirectly linked to that “satisfaction system”) where the economic and competitive interest of the providers continuously seeks after both environmentally and socio-ethically beneficial new solutions. Eventually including both the particular final customer demand (“unit of satisfaction” powered by the energy) and a local energy network.
5.2 LeNSes, the Learning Network for Sustainable energy systems

The above working hypothesis has been inserted the recently (10.10.2013) started project The Learning Network for Sustainable energy systems. It is a recently awarded (10.10.2013-9.10.2016) EU funded bioregional project under the Edulink II program, that will run for 3 years. Promoted and coordinated by the Design and system innovation for Sustainability research group of the Design department of the Politecnico di Milano University (by the author of this paper) involves 6 other partners: the Brunel University, UK, the Delft University of Technology, the Netherlands, the Cape Peninsula University of Technology, South Africa, the Makerere University, Uganda, the University of Botswana, Botswana and the University of Nairobi, Kenya.

It is a Multi-polar and open network for curricula and lifelong learning capacity development focused on locally-based Sustainable Energy System Design & Engineering (SES.DE). In fact, it is based on the on the research working hypothesis highlighted in the previous chapters. Coherently with what has been discussed above, the focus will be on innovative solutions to improve access to cleaner and stable energy services. And in particular on locally-based, renewable, secure, cleaner and economically viable (even to marginalized persons) energy services, based on the promising models of Sustainable Product-Service Systems (PSS) and Distributed Renewable Energy (DRE). In this framework the focus is on extending the access to those people/communities that do not have yet access to energy services (e.g. rural communities) and improving the offer for those who already have access to it (e.g. urban contexts), integrating, in both of the cases, gender equity issues. Moreover there will be a focus also on the use of modern (energy) technologies, and in particular on the most effective and appropriate technologies to manage the generation, storage, distribution and use of renewable energies in locally-based systems. Finally, these issues will be approached from a multidisciplinary and systemic perspective, focusing on: the proper configurations of the socio-economic actors (appropriate partnerships alongside with appropriate technologies) to locally produce, deliver and maintain the energy systems; co-design approaches involving stakeholders including final users.

Its focus on access to Renewable Distributed Energy (DRE) systems is in line with the target countries’ national and regional plans. In Uganda, one of the goals of the Renewable Energy Policy is “to promote the decentralized (distributed), off-grid electricity supply models [...] by the deployment of locally available renewable energy sources”. In Botswana the National Development Plan 10 (2009-2016) underscores the need to achieve national “energy security” and “self-reliance”; in addition Botswana is planning to have a renewable energy feed-in tariffs for electricity generation. In Kenya the Energy Plan states that the Government shall: “designate a Renewable Energy Lead Agency to promote and accelerate the exploitation of this resource”; “building programmes for players in renewable energy technologies in collaboration with training institutions”; “develop a tariff for net metering for electricity generated from renewable energy sources [...] [and] encourage consumers sell excess power generated from the renewable energy systems”; “Open up off-grid areas in order to ease connectivity to electricity by constructing transmission lines to link them up to the national grid”. In South Africa the Renewable Energy Market Transformation Programme focuses on removing the barriers and reducing the costs of renewable energy technologies and promoting independent renewable energy producers to feed into the national grid.

The Overall objective of the project is to contribute to curriculum and lifelong learning capacity development in SES.DE, to favor the building up a new generation of practitioners capable of extending the access to locally-based, secure and cleaner energy services, based on the promising models of Product-Service Systems (PSS) and Distributed Renewable Energy (DRE), and addressing equity and gender issues. So forth based on the working hypothesis that has been articulated in the previous chapters.
The specific objective is to create a multi-polar network among African and European HEIs, to support African HEIs teachers to deliver didactic curricular courses and lifelong learning modules: A network promoting an open source and copyleft ethos for knowledge building and sharing - supported by an Open Learning E-Platform (OLEP) - aimed at: (i) jointly promoting a new shared disciplinary ground on SES.DE; (ii) jointly developing courses/modules, learning resources, tools and guidelines to support educators; (iii) supporting exchanges among HEIs and practitioners in Africa and Europe; (iv) ensuring the endurance of the action after the project end.

The estimated results are:
- The Open Learning E-Platform (OLEP) for a decentralized production/fruition of knowledge in a open and copyleft ethos, with a modular e-package of learning resources (slide shows, texts, audio, video, etc.) and tools to be freely downloaded, modified, remixed, reused, and up-loaded.
- 4 pilot and 4 permanent curricular courses in the 4 African partner HEIs.
- 4 lifelong learning modules in the 4 African partner HEIs.
- A copyleft didactic book on locally-based SES.DE.
- An international conference; a teachers-targeted workshop; an international students’ design award.
- A catalogue of sustainable energy solutions, showcasing best practices, and new concepts and ideas.

6. Design and pilot implementation of a DRE-based S.PSS: the Sunride sustainable mobility system in Cape Town

6.1 The Mulo solar system in Africa

MULO System (system for Urban Mobility for Labour purpOses) is a family of light working vehicles for urban contexts powered by solar, electric and human power, convertible in four variants: freight transport, people transport, green areas maintenance and hawkers.

The first version of the vehicle was prototyped in 2009 by the high school IPSIA “A. Ferrari” Maranello in collaboration with DIS (Design and Innovation for Sustainability) unit of research of Politecnico di Milano on the base of a design by Fabrizio Ceschin (Design Master thesis).

![Fig. 9. Rendering Mulo in four different variants](image)

![Fig. 10. First prototype of the Mulo on road](image)

Mulo system: an open project of sustainable DRE-based mobility for all

The Design and system Innovation for Sustainability (DIS) research group (Politecnico di Milano, Design department) since a couple of years is promoting Mulo project: an open project to diffuse sustainable
(mobility) PSS powered by a Distributed Renewable Energy (DRE) system; this is made throughout the design and activation of various socio-technical experiments (pilot projects) developed in low and middle-income contexts in collaboration with local universities, as well as local companies, NGOs and administrations.

Fig. 11. Mula system an open project developed in different contexts

Sunride: The Cape Town sustainable mobility system pilot project
Currently, a sustainable DRE-based mobility project has been designed and pilot implemented for the transportation of people with physical disabilities in Cape Town, South Africa. It is the result of collaboration between Politecnico di Milano, IPSIA “A. Ferrari” di Maranello and Cape Peninsula University of Technology (CPUT) in Cape Town, Shonaquip, a south African social enterprise which produce aids for people with disabilities, and Bicycle Empowerment Network (BEN) a NGO based in Cape Town aimed to reduce poverty and improve mobility through the promotion of the bicycle in all its forms.

Once the network of Italian and South African stakeholders was established, it was possible to start the design and the engineering of the vehicle to fit local circumstances and type of use. At the same time stakeholder configuration was designed as a sustainable Product-Service system based on Distributed Renewable Energy.
The mobility service system at its full operative phase is designed to be environmentally, socio-ethically and economically sustainable.

The designed system is based on the partnership between a vehicles company manufacturer (so far Shonaquip) and a local NGO (so far BEN bikes), which represents the Product-Service System (PSS) provider; they keep the ownership of the solar powered vehicles and offer an integrated mobility service, on a pay-per-move base.

The PSS provider signs agreements with associations/companies - such as local community, local clinic, touristic companies, public transportation companies - interested in renting the vehicles to give access to mobility to people in their specific context of action.

Each solar vehicle generates renewable energy directly used to assist the riding. While if the vehicle is not used, the energy produced can be sold to recharge small electrical devices. The project has been addressed for Cape Town suburbs, where the public transportation is limited or even absent and not always affordable due to high percentage of unemployment.

The company that manufactures the solar powered vehicles, instead of selling them is paid on a pay-per-move base, keeping the ownership on all tangible products and providing, within the cost, an integrated maintenance and repairing service. The customers are not exposed to high initial investment cost and the providers are economically interested to improve continuously the tangible products, in terms of their longevity and recyclability, as well as their energy efficiency and solar power capacity. Furthermore, the designed stakeholder configuration foresees the creation of job opportunities for marginalized people while satisfying the needs of mobility for low-income disabled people (for all).
Simultaneously, in order to identify how to overcome implementation barriers and help achieve its dissemination, it was designed a transition path based on a series of socio-technical experiment (pilot projects).\(^\text{7}\)

Finally a prototype of the vehicle was manufactured in Cape Town, to carry until 2 passengers and 1 wheelchair user (see figure). The prototype of the vehicle was used for the implementation of the socio-technical experiments.

\(^{7}\) A socio-technical experiment can be defined a partially protected environment where a broad network of actors can learn and explore (I) how to incubate and improve radical innovations and (II) how to contribute to their societal embedding. Socio-technical experiments in order to contribute to transition processes should be conceived to act as: - Labs, to test, learn and improve the innovation on multiple dimensions (technical, usability, regulative, political, economic, socio-cultural ones), and in relation to different contexts; - Windows, to raise interest on the innovation project and the related actors, disseminate results, build-up synergies with existing similar projects/initiatives, and attract and enroll new potential actors; - Agents of change, to influence contextual conditions in order to favour and speed-up the societal embedding process. Experiments should be conceived to introduce and diffuse new ideas and knowledge to the community, and stimulate various social groups (users, public institutions, companies, etc.) to change their perspectives, beliefs, and lifestyles. (Ceschin, 2012)
Shonaquip, Politecnico di Milano and CPUT (co-owners of the prototype of the vehicle) gave over the management of the vehicle to BEC Imfundo cycling, to take care of the mechanical maintenance and management of elderly sick and disabled transportation, from their home to any point of interests around Lavender Hill community, such as to the Hospital, to the Church or the post office.

During the pilot project the transportation service did not charge any specific fee, but even but donations were accepted. The Imfundo Cycling club, a group of young cyclist formed around the BEC, have a means to gain income and exercise by driving the vehicle, which will keep them away from negative influences in the community.

A rental service took place so that NGO’s in the community, in particular the local Medi-clinic and Philza Abafazi Bethu NGO, have rented the vehicle for their own excursions such as carrying their patients around in the community or delivering food at homes.

The beginning of the pilot project was outlined by a Launch event organized in collaboration with BEN Bikes. The event was aimed to show to the audience the working prototype of the vehicle and to the community where the pilot project will run as well as incubating new projects, with new partners. After the event a small meeting between the most important actors took place in order to define the further steps of the project.

After a first testing period the DRE-based S.PSS was refined and a business plan proposal was developed (for the system at its full operative phase). In order to make the service economically self-sustainable the system has been broaden to other type of transportations creating profitable businesses such as the transportation of tourists or commuters around the city centre (Delfino, Remotti, 2012). The next steps are to broaden the network of stakeholders even more and diffuse the S.PSS in different context around the Cape Town metropolitan area, creating many independent but connected local mobility systems.

7. **Conclusions**

During the Learning Network on Sustainability (LeNS) project funded by the EU (12.2007-12.2010), the relevance of PSS design for sustainability in middle and low-income context has emerged, especially when this offer is merged with the model of Distributed Economies (Vezzoli et al. to be published 2014). The recently (10.2013-10.2016) awarded EU funded project Learning Network on Sustainable energy system (LeNSes), will work on a declination the former research working hypothesis in the crucial sector of energy, aiming a building up a knowledge-base and know-how to system design for sustainable energy for all. In operative terms, the system design approaches, skills, method and tools (i.e. the MSDS introduced previously) proposed by the former LeNS project will be adjusted, specified and merged to properly tackle the incorporation of Distributed Renewable Energy systems.

On the other hand the Sunride sustainable mobility system in Cape Town and more in general the Mulo open project, will continue to be a privileged testing ground of the theoretical and methodological outcomes of the LeNSes project, i.e. a testing ground of the system design for sustainable energy (for all) approach.

Finally, a new system design approach will be developed and tested as a promising contribute to the needed and key paradigm shift in the energy sector, seen by the most as the essential leverage for the transition towards a sustainable society.

Acknowledgement

The paper is the result of the collaboration between the two authors; nevertheless Carlo Vezzoli wrote paragraphs 1, 2, 3, 4 and 6; Emanuela Delfino wrote Paragraph 6.
References

Cooper T., Sian E., Products to Services, the friends of the earth, Centre for Sustainable Consumption, Sheffield Hallam University, 2000.

LeNSes (2013) EU project proposal submit to EU.

